Книга - Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография

a
A

Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография
П. И. Токарь

А. А. Зайцев

И. А. Кощаев

А. А. Рядинская

К. В. Лавриненко


Метионин, являясь незаменимой аминокислотой, играет важную роль в обмене веществ цыплят-бройлеров. Принимает активное участие в синтезе тканевых белков, а также процессах синтеза ряда витаминов, гормонов, ферментов. Именно поэтому вопрос использования метионина в рационах бройлеров является особенно актуальным.





Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров

Монография



Работа выполняется при поддержке гранта Президента РФ для

молодых ученых-кандидатов наук МК-2474.2022.5

Рецензенты:

Корниенко П.П., доктор с.-х. наук, профессор кафедры общей и

частной зоотехнии (ФГБОУ ВО Белгородский ГАУ, п. Майский)

Хохлова А.П., кандидат с.-х. наук, доцент кафедры общей и частной

зоотехнии (ФГБОУ ВО Белгородский ГАУ, п. Майский)



Авторы: Рядинская А. А., Кощаев И. А., Лавриненко К. В., Токарь П. И., Зайцев А. А.



© А. А. Рядинская, 2022

© И. А. Кощаев, 2022

© К. В. Лавриненко, 2022

© П. И. Токарь, 2022

© А. А. Зайцев, 2022



ISBN 978-5-0059-1147-6

Создано в интеллектуальной издательской системе Ridero




ВВЕДЕНИЕ


Российские птицеводы превысили количественные показатели продовольственной безопасности: в 2017 г. произведено 4 млн. 650 тыс. тонн мяса птицы, то есть самообеспеченность им составила 96%. Среднедушевое его потребление – 32,4 килограмма. Если сравнивать с мировыми показателями, то Россия занимает 4-е место по производству мяса птицы после Китая, США, Индии и Мексики.

Среди кроссов, используемых в стране, практически отсутствуют отечественные. Занимают рынок: Кобб-500 (33%), Росс-308 (32%), Хаббард (33%) [13].

Птицеводство – отрасль наиболее восприимчивая к нововведениям. Поэтому наиболее важными предпосылками эффективного развития этой отрасли были и считаются до сих пор научно-технические факторы. Ведь только благодаря НТП стала возможной и интенсификация, и индустриализация птицеводства. И поэтому необходимость в коренных изменениях отношения к использованию достижений науки и практики хозяйственной деятельности специализированных предприятий отрасли стала очевидной [28, 103].

В современных условиях жесткой конкуренции решение задач, стоящих перед птицеводством, возможно только в русле инновационного развития. Потребность в развитии инновационных идей испытывают все отрасли агропромышленного комплекса, в частности и птицеводства, так как от квалифицированной инновационной деятельности зависит успешное функционирование птицеводческих предприятий во внешней среде, а также продвижение произведенной птицеводческой продукции на внутренние и внешние рынки [123, 1].

При этом решающее влияние на экономику производства оказывает качества мяса и продуктивность цыплят-бройлеров

Птицеводческая мясная индустрия, без сомнения, является наиболее успешной из всех отраслей животноводства. Сегодня можно в 40-дневном возрасте получить бройлера-петушка массой 3 килограмм [2,4].

Однако в настоящее время многие производители стремятся сократить сроки откорма птицы для увеличения количества циклов выращивания в году. Но при сокращении сроков выращивания сложно добиться высоких качественных показателей мяса.

Основная задача птицеводства в современных условиях – повышение продуктивности птицы и качества продукции для более полного удовлетворения потребностей населения в экологически безопасных и высококачественных продуктах питания [102, 7].

Учитывая это, при проведении научных исследований в области птицеводства и конкурсных испытаниях птицы, возникает необходимость осуществлять оценку мясных качеств тушек и проводить органолептическую оценку яиц и мяса птицы [11].

Быстрое развитие птицеводства устанавливает новые требования к балансу питательных веществ в птицеводстве высокопродуктивных пород и гибридов. В этом отношении особенно важно улучшить технологию кормления домашней птицы, которая возможна с использованием научно обоснованных стандартов питания. В этом контексте качественное изменение характера продовольственного снабжения путем создания и использования эффективных биоактивных добавок и нового поколения лекарств не только питательно, но и защищает организм птицы [16].

Использование современных знаний о потребностях в питании и энергии, а также организация, основанная на этом рациональном питании домашней птицы, могут значительно повысить продуктивность и эффективность использования кормов для животных (Егоров И. и др., 2012). В последние годы ситуация с кормовой базой значительно изменилась в стране, что побудило специалистов адаптировать программы корма для домашней птицы. Переход к новой структуре некоторых кормов требует детального изучения анатомических, физиологических и биохимических, особенно птиц. Для того, чтобы повысить уровень реализации биоресурсного потенциала птицы, зависят от различных факторов – наследственные и окружающей среды [113, 9].

Полное и сбалансированное кормление влияет на экологические воздействия и является основой для высокопродуктивной продуктивности кормов для птицы и эффективной трансформации питательных веществ в продуктах. Перспективное направление в улучшении производительности птицеводства – улучшить естественные механизмы присущих птице от природы, так, чтобы в промышленных условиях, птица может адекватно без потери 10 производительности в ответ на неизбежный стресс была менее восприимчива к заболеваниям, связанным с особенностями ее кормления и содержания. Рентабельность производства птицы с высоким генетическим потенциалом зависит от качества кормовой добавки, для растущих потребностей организма. Полноценность питания определяется многими факторами, включая витамины и минералы, которые играют важную роль. Их метаболизм в организме нестабилен и зависит от вида, породы, возраста, продуктивности, условий содержания, сочетания питательных веществ, минералы и витамины в рационе, факторы стресса и многое другое. Каждый из этих факторов может изменить использование степени витамина B, макро- и микроэлементов и, следовательно, повлиять на эффективность зоотехнических показателей [2, 8].

Одним из главных принципов ведения современного мясного птицеводства является равномерное круглогодичное производство продукции требует современных подходов как к организации ведения технологического процесса, так и соблюдение технологических параметров выращивания цыплят-бройлеров.

Содержание птиц в птичниках с контролируемым микроклиматом, кормление сбалансированными полнорационными комбикормами, механизация и автоматизация технологических процессов позволяет получить высокий выход продукции – мяса цыплят – бройлеров в течение всего года [109].

Поскольку птица выращивается круглогодично при одинаковых параметрах микроклимата и потребляет полнорационные сухие комбикорма с постоянным химическим составом и питательностью в определенные возрастные периоды, то, казалось, и конечная живая масса должна быть одинакова, но живая масса птицы является полигенно обусловленной признаком, характеризуется невысоким уровнем наследуемости (h2 = 0,22 … 0,65), на уровень ее проявления в значительной степени влияют факторы внешней среды, что требует изучения их влияния на реализацию высокого генетически обусловленного потенциала продуктивности [11, 207].

Ритмичное круглогодичное производство мяса цыплят-бройлеров предусматривает создание и поддержание оптимального микроклимата, необходимых режимов освещения, кормление полнорационными комбикормами, выполнения производственных процессов согласно технологических графиков и карт, соблюдение ветеринарно-санитарных требований – однако строгое выполнение этих требований не всегда позволяет достичь высоких показателей производительности.

Принципы бройлерного производства основываются на использовании высокопродуктивной семенной гибридной птицы; применении полнорационных сухих комбикормов, позволяющих получать высококачественную продукцию при затратах корма на 1 кг прироста 2,5—3 кг; строгом соблюдении зооветеринарных и санитарных норм [193].

В настоящее время бройлерное производство – полная промышленная индустрия в птицеводстве со всей многообразной и конкретной технологией, где в основном выделяются технология выращивания на глубокой подстилке и на сетчатых полах.

Разведение и выращивание цыплят-бройлеров – это возможность обеспечить себя качественным мясом без особых усилий и затрат. Мясная порода отличается оптимальным соотношением расхода кормов и продуктивности, что является успехом для многих птицеводов и производителей [127].




1. Цыплята-бройлеры. Особенности физиологии



Бройлерных кур по-другому называют мясными. Главная особенность всех этих пернатых – быстрый набор массы при относительно небольшом расходе кормов [20]. Данные черты заложены на генетическом уровне. Уже к 60-му дню жизни, бройлеры способны набрать вес в 2 кг и больше. Выращиванием этой разновидности занимаются фермеры, желающие получить исключительно мясную продукцию. Яйца куры, конечно же, приносят, но в небольшом количестве [101, 50].

Бройлерных кур по-другому называют мясными. Главная особенность всех этих пернатых – быстрый набор массы при относительно небольшом расходе кормов. Данные черты заложены на генетическом уровне. Уже к 60-му дню жизни, бройлеры способны набрать вес в 2 кг и больше. Выращиванием этой разновидности занимаются фермеры, желающие получить исключительно мясную продукцию. Яйца куры, конечно же, приносят, но в небольшом количестве. Для чего нужны бройлеры?

Если сравнивать бройлеров и птицу мясного направления, то первые имеют существенные отличия от вторых, и заключаются они в следующем: высокая скорость роста; энергичное развитие; быстрый набор мышечной массы [6].

Достижение генетического потенциала, заложенного в птице, зависит от того, насколько все перечисленные на нижеприведенной схеме факторы одновременно и в одинаковой мере учитывались в производстве. Все эти аспекты взаимосвязаны. Если один из них не соблюдается на оптимальном уровне, то это отрицательно влияет на результаты бройлерного производства в целом [21].






Рисунок 1 – Факторы, влияющие на рост и качество бройлеров



Современное птицеводство характеризуется внедрением промышленных технологий: высокой концентрации поголовья на ограниченных площадях, круглогодового пребывания птицы в закрытых помещениях с клеточным содержанием, использования высококонцентрированных кормов. Интенсивное использование возможностей организма птицы -основа технологии отрасли, которая приводит к ослаблению конституции и здоровья птицы, что сопровождается понижением физиологической реактивности и естественной резистентности организма, нарушением обмена веществ, снижением продуктивности и сохранности, повышением агрессивности и выработкой гормонов стресса, оказывающих негативное влияние и на человека.

В связи с этим технология промышленного птицеводства требует от ветеринарных специалистов глубоких знаний особенностей биохимических процессов, протекающих в организме птицы в ранний постнатальный период, а так же изыскание способов повышения адаптационных возможностей организма с использованием биологических препаратов мягкого действия (адаптогенов, антиоксидантов, гепатопротекторов, иммуностимуляторов), улучшающих состояние функциональных систем, повышающих резистентность, продуктивность и сохранность птиц без каких-либо нарушений процессов пищеварения и обмена веществ [12].




1.1. Физиологические особенности пищеварения птиц


В условиях промышленного птицеводства вопросы рационального кормления и содержания птицы, повышения ее продуктивности не могут успешно решаться без знания специфики основных физиологических процессов, протекающих в её организме.

Птица имеет ряд биологических особенностей: быстрый рост, высокую физиологическую скороспелость, относительно высокую температура тела (40—42С), развитие эмбриона вне тела матери, своеобразное строение кожного покрова и его производных и др. В связи с этим физиология организма птицы во многом отличается от млекопитающего животного.

Пищеварительная система у птиц имеет ряд отличительных особенностей. Основные сведения о физиологии пищеварения у сельскохозяйственных птиц получены благодаря использованию метода хронических фистул, разработанного И. П. Павловым и его школой. С помощью фистул, которые накладывали на разные участки пищеварительного тракта, довольно подробно изучены пищеварительные процессы в зобе, желудке, кишечнике, секреция желчи и поджелудочного сока [78].

Желудочно-кишечный тракт птиц хорошо приспособлен к быстрому и эффективному перевариванию кормов с небольшим содержанием клетчатки. Коэффициент переваримости корма и скорость прохождения кормовой массы через пищеварительный канал у них выше, чем у млекопитающих, это связанно с меньшей протяженностью кишечника и более интенсивным расщеплением питательных веществ.

Ротовая полость образуется верхней и нижней частями клюва, зубы у птиц отсутствуют. Захваченная порция корма не пережевывается, она увлажняется слюной, которая выделяется в небольшом количестве, движениями языка перемещается в глотку и далее в пищевод и зоб [23].

В зобе происходит размягчение и набухание корма, переваривание углеводов, белков и жира за счет ферментов корма, зобного секрета, слюны и аэробных микроорганизмов (лактобацилл, кишечной палочки, энтерококков, грибков, дрожжевых клеток), которые обитают в зобе. Конечными продуктами превращения углеводов являются молочная, уксусная, пропионовая и масляная кислоты.

Желудок птиц состоит из двух отделов – железистого и мышечного. Содержимое зоба через нижний отдел пищевода поступает в железистый желудок и вызывает усиленную секрецию его сока, который содержит соляную кислоту, муцин, ферменты. По данным В. Ф. Лысова и В. И. Максимова (2003), с ильным возбудителем желудочных желез является белок; максимальная секреция желудочного сока и фермента пепсина отмечается при содержании белка в рационе в пределах 15—25%. Большее содержание белка в рационе кур вызывает перевозбуждение желудочных желез и, как следствие, угнетение их секреции. Железистый желудок очень мал, в нем происходит незначительное накапливание и переваривание пищи [1, 89].

Прием корма. Птицы захватывают корм клювом (клюют). Корм, потребляемый птицами разных видов, отличается по свойствам. Соответственно и пищеварительный аппарат у птиц разных видов имеет свои структурно-физиологические особенности.

Захваченная порция корма не пережевывается, а увлажняется слюной и движениями языка перемещается в глотку и далее в пищевод и зоб. Когда птица пьет, то набирает в рот порцию воды и поднимает голову, чтобы ее проглотить. Вода через зоб и желудки поступает прямо в кишечник: проходит по пищеводу, по желобку между мешками зоба, желудкам [17].

Пищеварение в зобе. Пищеварение в зобе сложный двигательно-секреторный процесс. В нем осуществляются два вида сокращений – перистальтические и тонические, которые сложно сочетаются и обеспечивают вначале поступление корма в левую половину зоба, затем в правую. Для зоба характерна определенная закономерность двигательной деятельности: 5… 12 последовательных сокращений сменяются 10-минутной паузой.

Непосредственно после заполнения зоба кормом движения его замедляются или полностью прекращаются на 35…40 мин. Сила сокращений зоба составляет 98…147 Па. Движения зоба обеспечиваются сокращением циркулярных и продольных гладких мышц, которое регулируется через блуждающие и симпатические нервы.

Мелкие компоненты содержимого зоба в первые минуты переходят в нижний отдел пищевода, более крупные задерживаются здесь до 14 ч. Поступление корма в зоб сопровождается возбуждением желез зоба.

В зобе с участием их секрета и слюны происходит размягчение и набухание корма, а также превращение питательных веществ корма за счет ферментов корма, микроорганизмов и слюны. В зобе обитают аэробные микроорганизмы, лактобактерии, кишечная палочка, энтерококки, грибы, дрожжевые клетки [30].

Гидролизуются преимущественно углеводы (под действием ?-амилазы) – 8… 13% (до 20%) растворимых углеводов корма, в небольшом количестве белки и жиры (за счет ферментов растительных клеток корма). Конечными продуктами превращения углеводов являются молочная, уксусная, пропионовая и масляная кислоты. Главная функция зоба емкостная. Перемещение содержимого из зоба обеспечивается за счет небольших сокращений в области зобной воронки.

Вначале появляется одно сокращение, через 1…3 мин возникает вторая волна, позже два-три последовательных сокращения, затем длительный покой. Основная масса содержимого эвакуируется из зоба в первые 3…6 ч, меньшая часть – в последующие 8 ч.

Пищеварение в желудке. Содержимое зоба через нижний отдел пищевода поступает в железистый желудок (провентрикулюм), где вызывает усиленную секрецию желудочного сока. Секреция желудочного сока осуществляется непрерывно; прием корма стимулирует его образование и выделение (у кур увеличивается после приема корма до 11… 13 мл/ч) [199].

Желудочный сок содержит фермент пепсин, в нем нет липазы (так как птицы не питаются молоком). Механизм возбуждения желудочных желез нервно-гормональный: установлены сложнорефлекторная и желудочная рефлекторно-гормональная фазы возбуждения и регуляции желудочных желез. Влияния на желудочные железы осуществляются через блуждающие и чревные нервы.

Сильным возбудителем желудочных желез является белок: максимальная секреция желудочного сока и фермента пепсина отмечена при содержании в рационе 15…25% белка. Большее содержание белка в рационе кур, уток и гусей вызывает перевозбуждение желудочных желез и, как следствие, угнетение их секреции.

Железистый желудок выполняет и двигательную функцию: ритм движения – сокращение в 1 мин. Содержимое задерживается непродолжительное время (не более 1 ч); в основном корм переваривается желудочным соком, а затем переходит в мышечный желудок [98].

Пищеварение в мышечном желудке интенсивное, происходит за счет ферментов желудочного сока обоих желудков и сильных сокращений самого мышечного желудка. Мышечный желудок птиц осуществляет два вида сокращений: фазные и тонические. Они происходят одновременно. На фоне периодического повышения и понижения тонуса мышц происходит двухфазное сокращение желудка (сокращение, прекращение его, после небольшого расслабления вновь сокращение и расслабление).

Частота сокращений мышечного желудка 1…6 раз в 1 мин (давление в желудке при этом достигает 13,3…39,9 кПа); продолжительность одного сокращения 10…60 с. Цикл движения мышечного желудка начинается с сокращения верхней промежуточной мышцы. В период ее укорочения начинается сокращение передней главной.

В начале расслабления последней следуют последовательные сокращения нижней промежуточной и затем задней главной мышцы. При сокращении промежуточной мышцы содержимое краниального мешка выдавливается в щелевидную полость между пластинами кутикул главных мышц [76].

Последующие сокращения передней главной мышцы смещают содержимое щелевидной полости в заднем направлении. Сокращение нижней промежуточной мышцы обеспечивает вытеснение химуса каудального мешка в полость между главными мышцами. Задняя главная мышца продвигает содержимое в направлении краниального слепого мешка. Главные мышцы в каждом цикле сокращений производят встречные движения, оказывая растирающее воздействие на частицы корма.

Асимметричность расположения волокон в главных мышцах желудка обеспечивает возможность осуществления и боковых движений. Сократительная деятельность мышечного желудка регулируется местно ауэрбаховским сплетением и рефлекторно с участием блуждающих и чревных нервов [81].

При сокращении в мышечном желудке создается высокое давление. За счет сильных сокращений происходит механическое превращение корма – растирание его компонентов. Эта особенность пищеварительного аппарата птиц компенсирует отсутствие зубов. Растиранию способствуют находящиеся в желудке гравий, стекло и т. п., которые периодически заглатывают птицы в естественных условиях.

Одновременно в мышечном желудке происходит и химическое превращение корма за счет ферментов желудочного, поджелудочного, кишечного соков и желчи, которые забрасываются сюда че304 рез неплотно закрытый сфинктер. Сфинктер между мышечным желудком и двенадцатиперстной кишкой периодически открывается в период пищеварения. В мышечном желудке пищеварение очень интенсивное; в нем перевариваются белки, жиры и углеводы. Время желудочного пищеварения короткое (1…3 ч) [15].

Входное и выходное отверстия в мышечном желудке расположены близко. В связи с этим его сокращения сопровождаются эвакуацией жидкого желудочного содержимого, а твердые и более крупные частицы корма задерживаются в желудке и подвергаются более глубоким превращениям. Содержимое из желудка поступает в кишечник порциями и периодами. Пищеварение в кишечнике. В кишечнике осуществляется полостное и пристеночное пищеварение; преобладает пристеночное.

Пищеварение происходит с большой интенсивностью, так как все ферменты пищеварительных соков в кишечнике высокоактивны. Поджелудочная железа секретирует поджелудочный сок непрерывно. Прием корма и воды вызывает увеличение выделения поджелудочного сока и ферментов. При трехразовом кормлении и поении за сутки у кур выделяется (50+1,7) мл, уток – (56+1,2), у гусей – (64±4,9) мл поджелудочного сока [178].

Сок содержит высокоактивные ферменты. Активность амилазы у кур 25…30 тыс. единиц, уток – 20…25, у гусей – 40…45 тыс. единиц. Активность протеазы 622 единицы (1 мг казеина, гидролизованного 1 мл сока в течение 1 мин) у уток, 250 единиц – у гусей. Активность липазы у гусей 2,2, кур – 5, у уток – 5,5 единицы.

Механизм возбуждения и регуляции секреторной деятельности поджелудочной железы рефлекторно-гормональный. Желчь образуется непрерывно; у кур около 0,4мл/ч. После кормления образование желчи усиливается до 1,5мл/ч. Такой уровень выделения желчи сохраняется около 5 ч, а затем постепенно снижается. В течение суток у кур и уток на 1 кг массы образуется более 26 и 36 мл желчи соответственно [84].

Больше желчи в кишечник поступает по синусно-кишечному протоку. Механизм образования и выделения желчи рефлекторно-гормональный. Сильным возбудителем является соляная кислота. Исследования секреторной деятельности желез тощей кишки показали, что из изолированной петли длиной 20 см за 2 ч выделяется около 1,5 мл чистого сока, обладающего амилазной, малътаз- ной, сахаразной и пептидазной активностью.

Хорошо развитый кишечник и ворсинки обеспечивают интенсивное всасывание подвергнутых превращению веществ. Общая площадь всасывания у кур в среднем достигает 2000 см


. В кишечнике всасываются 62…63% сухих веществ, 86…91% протеина, 62…54% жира, 80% БЭВ, 30…50% воды. Время кишечного пищеварения 3…5 ч.

Кишечник осуществляет активную сократительную деятельность: число перистальтических движений за 15 мин составляет 6… 10 (2… 19). Антиперистальтических сокращений меньше – от 0 до 3. Эвакуация содержимого осуществляется периодами по 30…40 мин, затем покой около 30 мин. За 15 мин через анастомоз у кур проходит до 50 мл химуса: в кишечник поступает в дневное время более 400 мл, ночью – около 250 мл [70].

Количество сухого вещества в химусе колеблется в пределах 7,5…20%. В химусе кишечника активность амилазы высокая – около 10мг/мл в 1 мин, протеаз – более 5 мг/мл в 1 мин, липазы – 0,3 ммоль/мл в 1 мин. Содержимое порциями, по 30…56 порций в 1 ч, поступает в слепые отростки. Поступление химуса сопровождается расслаблением сфинктеров слепых отростков.

Превращение веществ содержимого в слепых отростках осуществляется за счет ферментов, поступающих с химусом, собственного секрета (содержит ферменты, действующие преимущественно на промежуточные продукты распада белков, жиров и углеводов, – карбоксипептидазу, липазу, альфа-амилазу, глюкозидазу, фруктофуронидазу) и за счет ферментов микроорганизмов, населяющих слепые отростки (большое количество микроорганизмов, в том числе целлюлозолитические бактерии, которые обеспечивают расщепление клетчатки).

Химус слепых мешков обладает амилазной активностью (более 5 мг/мл/мин) и протеазной активностью (более 0,5 мг/мл/мин). В слепых отростках расщепляется 10…25% клетчатки, 8… 10% протеина, небольшое количество растворимых углеводов и липидов. Пищеварение в слепых отростках сопровождается сокращениями – 10… 12 в 1 ч. У кур сокращения характера тонического напряжения продолжительностью до 80… 100 с [23,16].

Периодически сфинктеры раскрываются и содержимое порциями поступает в прямую кишку. На 8… 10 сокращений тонкого кишечника, обеспечивающих поступление содержимого в слепые отростки, сфинктеры осуществляют одно сокращение, обеспечивающее эвакуацию содержимого в прямую кишку.

Время пищеварения в толстом кишечнике 6… 10 ч. В прямой кишке завершается формирование каловых масс – помета (беловатые полутвердые массы, представляющие собой смешанный кал и мочевые экскреты). Пищеварительные процессы у птиц чрезвычайно эффективны. Сформировавшийся помет периодически выбрасывается наружу рефлекторно через клоаку [41].



У птиц осуществляются три фазы желудочной секреции: сложно-рефлекторная, гуморальная и кишечная.

Пищевой корм, пропитанный желудочным соком, попадает в мышечный желудок, где и происходит основной процесс желудочного пищеварения, сдавливание и механическое перетирание корма за счет ритмично сокращающихся гладких мышц (каждые 20—30 секунд) и мелких камешек, заглатываемых птицей. Мышечный желудок имеет твердую ороговевшую складчатую оболочку – кутикулу, которая постоянно стирается и наращивается изнутри за счет желез, расположенных под ней и образующих затвердевший мукополисахаридный секрет. Регуляция моторной деятельности осуществляется нервно-гуморальным путем. Стимулирует моторику блуждающий нерв. В мышечном отделе желудка расщепляются белки животного происхождения, углеводы, в меньшей степени растительные белки и жиры. В мышечный отдел желудка постоянно забрасывается содержимое из двенадцатиперстной кишки с примесью желчи, в этой слабокислой среде сохраняют активность ферменты корма, и развиваются бактерии, переваривающие крахмал и жировые вещества [41,45].

Из мышечного желудка содержимое отдельными порциями поступает в двенадцатиперстную кишку. Длина кишечника у птиц не большая, в 3—7 раз превышает длину их тела, поэтому корм проходит через желудочно-кишечный тракт быстро, в среднем за 24 часа.

По данным Т. А. Столляр (1988), главным источником важнейших пищеварительных ферментов является сок поджелудочной железы, который вместе с желчью изливается в просвет двенадцатиперстной кишки. В кишечнике происходит основное переваривание белков, жиров и углеводов. Расщепление крахмала и дисахаридов осуществляется посредством гидролиза, когда корм основательно смешивается с пищеварительными соками, а также с различными микроорганизмами.

У птиц основные процессы всасывания происходят в тонком отделе кишечника. Здесь всасываются продукты расщепления белков, жиров, углеводов, вода, минеральные вещества и витамины [57].

Для всасывания имеет значение уровень секреторной и моторной деятельности пищеварительного аппарата, а именно, перистальтические движения кишечника повышают давление в полости кишки и усиливают всасывание. Процессы всасывания регулируются рефлекторным и гуморальным путем (Рис.2).






Рисунок – 2 анатомическое строение желудка курицы



В кишечнике осуществляется полостное и пристеночное пищеварение. Хорошо развитый кишечник и ворсинки обеспечивают интенсивное всасывание подвергнутых превращению веществ: 62—63% сухих веществ, 86-91-протеина, 62-54- жира, БЭВ – 80, 30—50% воды [153].

Время кишечного пищеварения 3—5 час, после чего содержимое порциями поступает в слепые отростки. В них превращение осуществляется за счет ферментов, поступающих с химусом, собственного секрета (содержит ферменты, действующие преимущественно на промежуточные продукты распада белков, жиров и углеводов) и за счет ферментов микроорганизмов, населяющих слепые отростки (в том числе целлюлозолитические бактерии, которые обеспечивают расщепление клетчатки). Химус слепых мешков обладает амилазной и протеазной активностью. В слепых отростках расщепляется 10—25% клетчатки, 8—10% протеина, небольшое количество растворимых углеводов и липидов, осуществляется синтез витаминов группы В, всасывание воды и минеральных веществ [109].

Минеральный обмен у птиц меняется в зависимости от периода развития. В постэмбриональный период у цыплят увеличивается содержание минеральных элементов в тканях, повышается минерализация костей скелета, возрастает потребление макро- и микроэлементов на единицу прироста. Минеральные вещества особенно важны для молодняка птицы. Рост и образование мышечной ткани тесно связаны с формированием скелета, где происходит интенсивное отложение минеральных веществ. Недостаток тех или иных минеральных веществ вызывает нарушение их обмена в целом и ведет к уменьшению продуктивности (Рис.3)






Рисунок – 3 Классификация минеральных веществ



Железо – металл VIII группы периодической системы. Входит в состав всех клеток организма в виде гемопротеинов (цитохромы, гемоглобины, ми-оглобин, пероксидаза, катал аза), железосодержащих ферментов негеминовой группы, железа – рыхло связанного с белками и другими органическими соединениями, а также резервное железо в составе ферритина и гемосидерина. По данным Груна и Анке, содержание железа в теле и перьевом покрове цыплят резко возрастает в первые недели жизни, а затем закономерно снижается [56]. Примерно 64 – 66% общего количества железа в организме птиц содержится в крови, 20 – в мышцах, 5 – в печени, 5 – в скелете, 2 – в селезенке, 2 – 4 – в прочих органах. Потребность птицы в железе обычно удовлетворяется за счет натуральных кормов. Добавки к рациону усвояемых форм железа иногда производят для обогащения мяса бройлеров.

У птицы комплексные соединения микроэлемента под влиянием соляной кислоты и пепсина желудочного сока растворяются, трехвалентное железо, восстанавливаясь, переходит в двухвалентное. Образующиеся соли хорошо ионизируются и адсорбируются. Всасывание происходит в двенадцатиперстной кишке и зависит от насыщения железом ферритина слизистой кишечника и трансферрина крови. Адсорбции элемента способствуют регулирующие вещества корма или антиоксиданты: аскорбиновая кислота, токоферол, цистин, глютатион. Всасывание ингибируют органические кислоты, которые, соединяясь с железом, образуют не растворимые соли (оксалат, цитрат, фитат), а так же избыток в рационе фосфатов, госсипола, танина, цинка, марганца, меди, кадмия. На усвоение железа сильно влияет величина рН содержимого желудка [127,84].

Птица хорошо усваивает железо из сульфатов, хлорида, тартрата, фу-марата, глюконата, цитрата, хелатных комплексов. Плохо всасывается из карбонатов, пиро- и ортофосфатов, восстановленного железа и практически недоступным для всех видов животных остается в оксидах. Птица лучше усваивает железо из введенных в комбикорма хелатных соединений железа с молочной кислотой, глицином или метионином [44].

Сложное взаимодействие в организме птицы существует между железом и микроэлементами: медью, кобальтом, марганцем, цинком. Широко известно, что для включения в состав гемоглобина требуются микродозы меди. Добавление меди при недостаточном уровне железа в рационе оказывает положительное влияние на состав крови кур.

При высоком уровне железа в рационах увеличивается потребность цыплят в марганце для роста и формирования костной ткани. Высокие дозы железа снижают положительный эффект добавок марганца на рост молодняка. Взаимодействие железа и марганца осуществляется на уровне пищеварительного канала, так как соединения железа (гидроокись и цитрат) уменьшают количество марганца в кишечнике кур.

Медь – металл побочной подгруппы I группы периодической системы. Медь катализирует включение железа в структуру гема, выступает как регулятор созревания эритроцитов, компонент многих оксидаз и медьсодержащих ферментов (цитохромоксидаза, тирозиназа, уратоксидаза, супероксид-дисмутаза, церулоплазмин и др.) [115,90].

В органах и тканях кур содержание меди находится – в крови -2-7 мг/кг, в печени – 10—30, в почках – 6—20, в бедренной мышце – 3—8, в скелете – 6—8; в пере – 4—5 (В. И. Георгиевский, 1970; І. Н. Nady, 1956).

Самое высокое содержание меди в теле суточных цыплят, а затем с возрастом птицы концентрация меди закономерно снижается. Эта закономерность наблюдается и в костном скелете. По данным Е. П. Жаровой (1969), у цыплят в возрасте 1, 30, 90 дней концентрация меди в большеберцовой кости составляет соответственно 16,5; 8,5 и 5,4 мг/кг сухой обезжиренной ткани.

Основное место всасывания меди – тонкий отдел кишечника и желудок, которое осуществляется двумя механизмами: активным и пассивным. Всасывание резко возрастает при дефиците элемента. Медиатором всасывания меди является низкомолекулярный белок стенки кишечника металлотио-неин, который способствует пассивной абсорбции элемента, связывая его с SH – группами и временно депонируя для последующего транспорта. Он также может блокировать всасывание, защищая организм от токсичных доз металла [107, 86].

Основная часть плазматической меди находится в соединении с а2-глобулином в виде церулоплазмина, В норме в организме ежедневно около 0,5 мг меди включается в состав церулоплазмина и выделяется через желчь в виде трудно дуализированного соединения, почти не подвергающегося обратному всасыванию. По мнению многих авторов, церулоплазмин не способен отдавать свою медь тканям, которые этот элемент получают, главным образом, за счет меди, связанной с альбуминовой фракцией.

Катионы, близкие к меди по своим химическим свойствам – цинк, кадмий, серебро, ртуть, свинец, мышьяк способны конкурировать с медью, вытесняя её из биологических комплексов, что приводит к развитию медной недостаточност [4, 18].

Потребность птицы в меди небольшие и они, по-видимому, удовлетворяются за счет натуральных кормов. Тем не менее, рекомендуется включать медь в рационы в дозах (в мг/кг комбикорма): курам-несушкам -10,0; цыплятам всех возрастных групп – 2,0—2,1.

При недостатке меди у подопытной птицы, наблюдается эритропения, снижение активности цитохромоксидазы в сердечной мышце, ухудшение пигментации пера [236].

Птица обладает малой чувствительностью к медному отравлению, но высокие дозы (1270 мг/кг корма) тормозят рост цыплят, снижают активность щелочной фосфатазы в крови и витамина А в печени, вызывает падеж.

Цинк – химический элемент побочной подгруппы II группы периодической системы. Он является необходимым элементом для жизни растений и животных. В растениях он участвует в окислительно-восстановительных процессах, образовании хлорофилла и ауксина (ростового вещества), синтезе аминокислоты триптофана.




1.2. Обмен веществ цыплят-бройлеров


Деятельность всех систем организма направлена на обеспечение обменных процессов. Благодаря обмену веществ организм снабжается пластическими и энергетическими материалами и освобождается от продуктов, которые не могут быть использованы или являются вредными. Преобразование поступивших в организм веществ происходит в результате процессов ассимиляции и диссимиляции. Ассимиляция – это процесс образования сложных веществ из более простых. Диссимиляция – это распад сложных веществ на более простые. При ассимиляции потребляется энергия, а при диссимиляции она освобождается. Пока организм живет, в нем все время одновременно идет распад и синтез веществ [223].

Птицы отличаются рядом особенностей обмена веществ. В частности, энергетический обмен у кур и индеек в 1,5—2,0 раза выше, чем у млекопитающих. Суточное количество энергии, вырабатываемое на 1 кг массы тела, также значительно больше у птиц, чем у млекопитающих (например, у лошади – 41 кДж, утки – 474,2 кДж).

Обмен белков. В тесной связи с высокой интенсивностью энергетического обмена находятся и показатели обмена белков. При выращивании цыплят на мясо за 40—50 дней их масса тела достигает 2000—2200 г, в сухом веществе которого более 60% приходится на белок. Отличительная особенность птиц – высокая интенсивность роста, особенно молодняка в раннем возрасте. Цыплята-бройлеры к времени убоя на мясо увеличивают свою первоначальную массу в 45—50 раз; утята – в 50—55; гусята – в 35—40; индюшата – в 60—65 раз (Рис. 4).






Рисунок 4 – Общая схема белкового обмена птицы



Роль белков организма. Белки выполняют роль пластического материала, необходимого для построения клеток, ферментов, гормонов, антител; служат источником энергии; из них могут образовываться углеводы и жиры; они обладают буферными свойствами и поэтому поддерживают кислотно-щелочное равновесие; создают онкотическое давление плазмы крови и этим регулируют обмен воды в организме [216].

Все птицы весьма чувствительны к недостатку в рационе аминокислот изолейцина и валина, в то время как млекопитающие – лизина, метионина и триптофана. При содержании птиц на рационах, бедных белком, происходит нарушение обмена веществ, в результате чего задерживается рост, снижается мясная и яичная продуктивность, понижается устойчивость к болезням, проявляется каннибализм.

В пищеварительном тракте птицы белки корма расщепляются протеолитическими ферментами пищеварительных соков ЖКТ до аминокислот, которые всасываются в кровь и далее идут на определенные нужды организма. В печени при дезаминировании от аминокислот отщепляется аминогруппа и безазотистый остаток. Аминогруппа вначале превращается в аммиак, а затем в мочевую кислоту и мочевину. У птиц много образуется мочевой кислоты и мало мочевины, а у млекопитающих наоборот. Аналогичные процессы происходят в почках. Безазотистая часть аминокислот используется для образования углеводов и жиров и как энергетический материал.

Конечными продуктами белкового обмена у птиц являются: мочевая кислота, в небольшом количестве мочевина, аммиак, креатин, гуанин. Эти вещества выделяются из организма с мочой [193].

Обмен углеводов. Углеводы организма птиц имеют следующее физиологическое значение: они являются источником энергии, особенно для мышц и центральной нервной системы; входят в состав тканей как структурный материал; необходимы для синтеза нуклеиновых кислот, в состав которых входят пентозы (рибоза и дезоксирибоза); используются для образования аденозинтрифосфорной кислоты; служат источником построения жира; необходимы для синтеза сложных белков (Рис.5)






Рисунок 5 – Общая схема углеводного обмена птицы



В пищеварительный тракт птицы углеводы поступают с кормом в виде полисахаридов, дисахаридов и моносахаридов. Под действием амилолитических ферментов пищеварительных соков ЖКТ углеводы корма расщепляются до моносахаридов (глюкозы). Всосавшаяся в кровь глюкоза попадает в печень, где 5% ее превращается в гликоген, а остальная часть поступает в кровь и ткани. Часть глюкозы, поступившей из печени в кровь, попадает в мышцы и там превращается в гликоген. Гликоген печени и мышц расщепляется в зависимости от потребностей тканей до глюкозы, которая и используется для энергетических и пластических целей [57].

Концентрация глюкозы в крови поддерживается на относительно постоянном уровне и составляет 180—230 мг%. Повышение концентрации сахара в крови по сравнению с нормой называется гипергликемией, а понижение – гипогликемией. Длительная стойкая гипергликемия бывает при отравлениях и заболеваниях, связанных с поражением печени и поджелудочной железы. При недостатке глюкозы в крови нарушается деятельность мышц и ЦНС. При резко выраженной гипогликемии возникают судороги, шок и даже смерть.

Обмен жиров. В организме птиц жиры имеют важное значение. Жиры и жироподобные вещества – это структурные, ничем не заменимые элементы живой клетки. Они являются источником для образования в организме углеводов и сложных белков (липопротеидов), а также ряда биологически активных веществ. Жироподобные вещества служат материалом для образования половых гормонов и гормонов коры надпочечников. Жиры являются хорошим источником энергии; служат источником воды в организме. Жир, особенно подкожный, плохой проводник тепла, поэтому он ограничивает теплоотдачу и защищает организм от переохлаждения. Выделяемый сальными железами кожный жир представляет собой хорошую смазку, предохраняющую кожу и перья от высыхания и намокания (у водоплавающих птиц) [61]. Жир необходим для образования у птиц яиц. Жир, жирные кислоты и глицерин, поступившие в лимфу и кровь, заносятся в легкие, печень, в жировые депо (подкожная клетчатка, сальник), к клеткам тканей. В депо жиры откладываются про запас. В клетках они используются как структурный материал и содержатся в виде включений (Рис.6)






Рисунок 6 – Общая схема липидного обмена птицы



В организме птиц и млекопитающих жиры могут образовываться из углеводов и белков, но этот факт не дает основания для полного исключения жира из рациона [87,17].

Конечными продуктами распада жиров являются углекислота и вода. При нарушении жирового обмена уксусная кислота, как промежуточный продукт окисления жирных кислот, не вся распадается до углекислоты и воды, часть ее превращается в кетоновые тела. Это может привести к отравлению [44].

Обмен минеральных веществ. В организме при участии минеральных веществ (макро- и микроэлементов) осуществляются многие важные процессы: транспортируются газы; поддерживается необходимое осмотическое давление; регулируется кислотно-щелочное равновесие; синтезируются ферменты, гормоны и витамины; создается нормальная возбудимость тканей; обезвреживаются ядовитые продукты обмена; происходит кроветворение, обеспечивается нормальный обмен воды, белков, углеводов и жиров; от них зависит рост и размножение птицы. Недостаток в организме минеральных веществ, а также их избыток задерживают рост птицы, нарушают состояние костей, понижают продуктивность птицы и даже могут вызвать смерть.

Обмен веществ регулируется ЦНС и гормонами. Нервный центр расположен в гипоталамусе промежуточного мозга. Усиливают синтез белков гормоны: соматотропный, андрогены, инсулин, адреналин, тироксин, эстрогены. Повышают распад белков гормоны коры надпочечников, щитовидной железы, передней доли гипофиза (тиреотропный и адренокортикотропный, эстрогены). Соматотропный гормон гипофиза, гормоны щитовидной железы и половых желез стимулируют диссимиляцию жира, инсулин поджелудочной железы усиливает превращение углеводов в жиры [27].

Роль витаминов в обмене веществ. Птицы проявляют повышенную чувствительность к недостатку всех витаминов. Витамины являются биологическими катализаторами обменных процессов организма. Витамины входят в состав активных групп ферментов, которые катализируют обмен белков, жиров, углеводов, минеральных веществ. Они нужны для усвоения и превращения различных веществ и для осуществления многих функций организма. От наличия витаминов зависит рост птицы, продуктивность, воспроизводство, устойчивость к заболеваниям. Различные авитаминозы имеют ряд общих признаков, а именно: птицы теряют аппетит, развивается угнетенное состояние, задерживается рост, уменьшается яйценоскость, ухудшаются инкубационные качества яиц, понижается устойчивость организма к заболеваниям, нарушается обмен веществ, часто наступает смерть [166].

Обмен энергии. В процессе жизнедеятельности организм птицы обменивается энергией с окружающей средой. В организм поступает потенциальная энергия, заключенная в углеводах, жирах и белках корма. В результате диссимиляции питательных веществ энергия освобождается и расходуется для синтетических процессов, связанных с ростом организма и образованием продукции, для мышечной деятельности, нагревания корма, воды, воздуха. Часть энергии организм постоянно отдает во внешнюю среду через поверхность тела, при дыхании, с мочой и калом, с продукцией (яйцо).

Температура организма. Птицы имеют относительно постоянную температуру тела, не зависящую от температуры внешней среды. Постоянство температуры тела птиц обусловлено наличием у них совершенной терморегуляции.

Колебания температуры тела в пределах физиологической нормы вызывают следующие факторы: время суток, кормление, возраст и пол птицы, мышечная работа. Ночью температура ниже, чем днем (на 0,5 градуса), наблюдаются колебания и течение дня – к полудню она выше, к вечеру понижается [132].

Решающим фактором для успешного развития птицеводства является создание оптимального микроклимата в птичниках. В наибольшей степени к этому требовательны цыплята. К моменту вывода они не обладают достаточно развитой терморегуляцией. Куриный зародыш до известной степени пойкилотермен, и только после вылупления у цыпленка начинают формироваться механизмы, обеспечивающие ему температурный гомеостаз. Это происходит на 15-20-й день жизни цыпленка, и с этого времени его уже можно считать гомойотермным. Зона термонейтральной температуры для птиц лежит в пределах 16—18 – 29—32


С. У цыплят до двух недель жизни зона термонейтрали не должна выходить за пределы 35


С [47].

Особенностью теплорегуляции у птиц является то, что расположенные под кожей перьевые сумки снабжены мышечными волокнами, что позволяет птице произвольно прижимать к телу или поднимать, а также поворачивать вокруг оси контурные перья. Когда нужно увеличить отдачу тепла птица, прижимая перья, сдавливает расположенный под ними пух и выталкивает в атмосферу заключенные между бородками пуха пузырьки воздуха. Одновременно поворотом перьев приподнимаются их концы, позволяя воздуху свободно входить снаружи под перья и проникать к коже; толщина изолирующего слоя при этом уменьшается, а его удельная теплопроводность возрастает – тепло уходит от тела. Когда же нужно сохранить тепло, то все происходит наоборот: птица поднимает перья, пух расправляется, воздух заполняет пространство под перьями, их верхняя поверхность смыкается наподобие черепицы, и доступ воздуха снаружи под перья прекращается; в результате толщина изолирующего слоя увеличивается, а его удельная теплопроводность снижается – тепло держится у тела. Птица может изменять удельную теплоотдачу в большом диапазоне: и отдавать его, как голая тонкая кожа, и сохранять так, как не могут никакие естественные или искусственные материалы [202].

У птиц нет потовых желез, поэтому защита организма от перегрева обеспечивается повышенным выделением водяных паров за счет учащенного дыхания с открытым клювом, растопыривания крыльев и увеличения потребления воды, которая охлаждает внутренние органы и кровь. Куры породы белый леггорн при температуре 42


С, не получая питьевой воды, гибнут в течение 85 минут. При наличии воды более устойчивые особи находятся в хорошем состоянии до 11,5 часов, но при этом беспрерывно пьют. При нормальных температурах куры потребляют около 170 г, при температуре 35


С – до 300 г воды в сутки и больше. Отношение приема воды к приему корма при температуре 18


С составляет 2:1, при 35


С – 4,7:1, при – 3


С – лишь 1,3:1 [216].

При температуре 38—40


С в течение 2,5—3 часов значительная часть петухов погибает. У несушек под влиянием повышенных температур снижается поедание корма, яйценоскость, масса яиц, прочность скорлупы. Более низкие температуры взрослые куры переносят легче, чем высокие. При температуре в птичнике – 7—14


С снижается яйценоскость, но падеж не увеличивается. На холоде куры скучиваются и прячут клюв в оперение. Определенной устойчивостью к действию низких температур обладают зародыши, и особенно в начале инкубации. Заложенные в один день на инкубацию яйца, подвергнутые в течение трех часов действию нулевой температуры, развивались почти нормально – 96% выхода. С возрастом эта устойчивость падала. Так, на 12-й день развития после действия на яйца такой же температуры 50% зародышей отмирало, и на 14-й день – погибали все зародыши [204].

Важное значение имеет и влажность воздуха в птичнике. Высокая относительная влажность (90—100%) вредна особенно в зимнее время, т.к. при этом становятся влажными перья и кожа, что увеличивает потери тепла у птицы. Увлажняется подстилка, создаются условия для бактериального обсеменения помещения микрофлорой. При низкой влажности (менее 20%) повышается пылевое загрязнение. Такое же влияние оказывает и высокая скорость движения воздуха в помещении. Допустимой считается скорость до 0,3 м/с, а в летние месяцы – до 1,5 м/с. Важно следить за газовым составом воздуха и временем освещения помещений для птиц разных возрастных групп [65].




2. Промышленное выращивание цыплят-бройлеров



Среди всех видов животноводства одним из наиболее простых и одновременно прибыльных вариантов деятельности является выращивание бройлеров. Организовать с нуля такой бизнес можно в сравнительно короткие сроки с небольшими вложениями, в том числе и на приусадебном хозяйстве, а первый доход в зависимости от выбранного направления может поступить уже через несколько дней. Однако, планируя заняться данной деятельностью, нужно досконально разобраться во всех тонкостях и особенностях.

Прежде всего, следует учитывать, что птица, в особенности молодняк, чувствительна к условиям содержания и выращивания. Поэтому предварительно нужно тщательно изучить матчасть, а также просчитать все целевые показатели, сроки и затраты, учесть все вероятные риски и продумать каналы сбыта готовой продукции. В общем, нужно составить полноценный бизнес-план [66].

В каждой отрасли сельского хозяйства есть свои достоинства и недостатки, тоже самое касается и бройлерного разведения. Ознакомиться с особенностями мясных кур можно в следующей таблице.






Таблица 1- Плюсы и минусы промышленного выращивания бройлеров



Разведение и выращивание цыплят-бройлеров – это возможность обеспечить себя качественным мясом без особых усилий и затрат. Мясная порода отличается оптимальным соотношением расхода кормов и продуктивности, что является успехом для многих птицеводов и производителей [80].

Бройлеров разводят много лет. В разведении преобладают мясо или мясо-яичные продукты этой породы. Скрещивание позволяет получать особей повышенной массы. В них зрелые птенцы до 6 месяцев набирают огромную массу. За такой короткий срок жизни они готовы на убой.

Изначально скрещивание происходило по отцовской линии Корнуолла, а по материнской линии – от Белого Плимутрока. Селективное разведение практиковалось с 1930 г. и достигло своего пика в 1960 г. Но на этом развитие не остановилось. В программы разведения крупного рогатого скота входили породы Бойцовский Корниш, Нью-Гэмпшир, Лангшанс и порода цыплят Джерсийский гигант. В результате цыплята приобрели прочную генетическую линию мяса. Их можно использовать в домашнем хозяйстве или в крупном производстве [210].




2.1. Анализ современного положения отрасли мясного птицеводства


Птицеводство имеет свою историю. Из литературных источников известно, что впервые промышленное производство мяса птицы было организовано в США, в штате Нью-Джерси, в 1880г. Население этого штата в основном занималось овощеводством и садоводством. Но в зимнее время объемы работ в этих отраслях снижались, и жители стали разводить мясных цыплят. Однако масштабного разведения не достигли из-за большого падежа птицы ввиду незнания тонкостей ее кормления и содержания. Кроме того, не было рынков сбыта зимних и ранневесенних птиц.

Только спустя почти 50 лет, в 1930-е гг., производство мяса птицы было признано промышленным. В 1935г. в США поголовье птицы составляло 43 млн гол., а в 1967 г. – 2,6 млрд гол. В 1976 г. в США было выращено 3 млрд гол. и получено 4,1 млн т мяса.

Успехи в развитии птицеводческой промышленности вызвали достижения в племенной работе, применение кормов, подобранных по генотипу, создание и соблюдение определенных условий содержания.

Быстрый скачок производства мяса птицы также можно обусловить следующими факторами:

– быстрый рост птицы;

– хорошая оплата корма приростом;

– мясо имеет диетические качества;

– возможность механизации трудоемких процессов [10].

В XVIII – XIXвв. птицеводство в России считалось одной из отстающих отраслей сельского хозяйства. Этим в основном занимались мелкие крестьянские фермы. Яйценоскость кур-несушек составляла всего 50—60 яиц за сезон. Яйца были мелкие с грязной скорлупой, а птицы имели небольшую массу. В 60—70 гг. XIXв. Германия и Великобритания начали производить закупку яиц и птицы в России. К началу XXв. экспорт птицеводческих продуктов в России достиг огромных размеров. В то время, как в 1896 г. объемы экспорта оставляли всего 4%, к 1913 г. это число увеличилось в 4 раза.

Резко возросло поголовье птицы, достигшее к 1913 г. 249,9 млн, в том числе кур – 217,5 млн гол.

В 1962 г. началось строительство первых крупных специализированных фабрик. В 1974 г. в СССР работали 64 птицефабрики, а в 1975 г. их количество увеличилось до 90 шт. В 1980 г. было произведено 555 тыс. т мяса; в 1990 г. производство составило 4,5 млн т, в том числе 3,82 млн т мяса цыплят-бройлеров.

Потребность населения Российской Федерации в мясе птицы до 1992 года обеспечивалась за счет собственного производства и составляла 12,4 кг. Однако последующие годы стали для отечественного птицеводства периодом экономических потрясений, приведших к резкому сокращению выпуска этой диетической продукции [62,98].

Наряду с объективными причинами ухудшения состояния отрасли (диспаритет цен, удорожание кредитных ресурсов и пр.) сказались и особенности ситуации, сложившейся в первое время реформ. Руководители и специалисты многих хозяйств считали, что оказываемая им ранее государственная поддержка сохранится при любых условиях. Некоторые возлагали надежду на приватизацию, повышение мотивации труда в связи с передачей предприятий в собственность коллективов. И совершенно не предвидели того, что случится [13].





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=68341703) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



Метионин, являясь незаменимой аминокислотой, играет важную роль в обмене веществ цыплят-бройлеров. Принимает активное участие в синтезе тканевых белков, а также процессах синтеза ряда витаминов, гормонов, ферментов. Именно поэтому вопрос использования метионина в рационах бройлеров является особенно актуальным.

Как скачать книгу - "Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография" в fb2, ePub, txt и других форматах?

  1. Нажмите на кнопку "полная версия" справа от обложки книги на версии сайта для ПК или под обложкой на мобюильной версии сайта
    Полная версия книги
  2. Купите книгу на литресе по кнопке со скриншота
    Пример кнопки для покупки книги
    Если книга "Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография" доступна в бесплатно то будет вот такая кнопка
    Пример кнопки, если книга бесплатная
  3. Выполните вход в личный кабинет на сайте ЛитРес с вашим логином и паролем.
  4. В правом верхнем углу сайта нажмите «Мои книги» и перейдите в подраздел «Мои».
  5. Нажмите на обложку книги -"Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография", чтобы скачать книгу для телефона или на ПК.
    Аудиокнига - «Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография»
  6. В разделе «Скачать в виде файла» нажмите на нужный вам формат файла:

    Для чтения на телефоне подойдут следующие форматы (при клике на формат вы можете сразу скачать бесплатно фрагмент книги "Влияние различных уровней источников метионина на показатели продуктивности цыплят-бройлеров. Монография" для ознакомления):

    • FB2 - Для телефонов, планшетов на Android, электронных книг (кроме Kindle) и других программ
    • EPUB - подходит для устройств на ios (iPhone, iPad, Mac) и большинства приложений для чтения

    Для чтения на компьютере подходят форматы:

    • TXT - можно открыть на любом компьютере в текстовом редакторе
    • RTF - также можно открыть на любом ПК
    • A4 PDF - открывается в программе Adobe Reader

    Другие форматы:

    • MOBI - подходит для электронных книг Kindle и Android-приложений
    • IOS.EPUB - идеально подойдет для iPhone и iPad
    • A6 PDF - оптимизирован и подойдет для смартфонов
    • FB3 - более развитый формат FB2

  7. Сохраните файл на свой компьютер или телефоне.

Рекомендуем

Последние отзывы
Оставьте отзыв к любой книге и его увидят десятки тысяч людей!
  • константин александрович обрезанов:
    3★
    21.08.2023
  • константин александрович обрезанов:
    3.1★
    11.08.2023
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *