Книга - Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок

a
A

Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок
Юрий Степанович Почанин


В книге "Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок" рассмотрены основные элементы ветроустановок для малой энергетики и промышленного применения. Предложены оптимальные схемы подключения, монтажа и сервиса оборудования ветроустановок. Книга может представлять интерес для школьников, студентов и специалистов, занимающихся монтажом и сервисом ветроустановок.






Введение


Энергию ветра относят к возобновляемым видам энергии, так как она является следствием активности Солнца. Ветроэнергетика является бурно развивающейся отраслью. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов (КИУМ) в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). Использование энергии ветра – одно из перспективных направлений современной энергетики. Последние годы наблюдается массовое увеличение размеров и количества ветропарков во всех прогрессивных странах мира. «Ветряки» становятся выше, а их лопасти длиннее и легче, что позволяет им работать даже при небольшой силе ветра. Сооружения устанавливаются повсеместно: в лесах, полях, на побережьях, в прибрежных водах морей и океанов (оффшорные парки). Даже в густонаселенных мегаполисах архитекторы умудряются внедрить ветрогенераторы в конструкции небоскребов, переведя их на частичное само обеспечение.

Для координации усилий и быстрого реагирования на изменения запросов рынка ветровой энергии создана международная некоммерческая организация WWEA (World Wind Energy Association) со штаб-квартирой в Германии. Сегодня ассоциация объединяет интересы более чем сотни стран-участниц. Задачей WWEA является постоянный мониторинг потребностей и предложений в области возобновляемой энергетики, проведение исследований и предоставление консультаций заинтересованному сообществу. Ассоциация отслеживает развитие ветроэнергетической отрасли во всех странах и составляет рейтинг ведущих потребителей и поставщиков соответствующего оборудования. В соответствии с информацией, опубликованной на сайте организации 10 февраля 2016 года, лидерами в использовании альтернативной энергетики является следующие страны.

Китай. Суммарная выработка электроэнергии в ветропарках Китая в конце 2015 года приблизилась к 150 ГВт. При этом страна является относительно новым игроком на рынке ветроэнергетики. Но темпы роста промышленности диктуют свои условия, поэтому в ближайшие годы планируется дальнейшее наращивание ветроэнергетического потенциала страны. Заявленная страной цифра потребления ветровой энергии к 2020 году составляет 200 ГВт.

США. Развитие альтернативной энергетики, в том числе – ветровой, в Соединенных Штатах – постоянный, планомерный процесс. К началу 2016 года суммарная мощность американских ветропарков оценена в 74,35 ГВт. В силу довольно жесткой регуляторной политики, проводимой властями в энергетической области, в стране не наблюдается ярко выраженного бума строительства «ветряков», однако страна продолжает уверенно удерживать второе место.

Германия является традиционным лидером в производстве ветровых турбин. Все самое инновационное оборудование в этой отрасли производится здесь. Общая мощность собственных ветроэлектростанций Германии – на текущий момент – 45,2 ГВт, что составляет около трети суммарной производительности ветропарков всего Евросоюза. Прирост доли энергии, вырабатываемой «ветряками» в стране в 2015 году, составил почти 10%. В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2015 год в Дании с помощью ветрогенераторов производится 42 % всего электричества; 2014 год в Португалии-27 %; в Никарагуа-21 %; в Испании- 20 %; Ирландии-19 %; в Германии-18,8% ; в ЕС в целом -7,5 %. В настоящее время крупнейшими поставщиками электроэнергии являются следующие ветропарки:

– Ветропарк Alta Wind, Калифорния, США, производящий 1,55 ГВт чистой электроэнергии. Комплекс продолжает развиваться и уже к 2040 году планируется прирост его мощности до 4,0 ГВт.

– Ветроэнергетический комплекс Ganzu, расположенный на западе Китая и состоящий из нескольких крупных ветропарков, суммарная производительность которых составляет более 5 ГВт. В соответствии с планом развития, к 2020 году планируется наращивание мощностей до 20,0 ГВт.

– Британский оффшорный массив London Array, расположенный дельте Темзы, – крупнейший проект такого рода. В настоящее время ветропарк на воде генерирует 0,63 ГВт электроэнергии. Суммарное количество электроэнергии, вырабатываемое всеми оффшорными ветроэлектростанциями Британии, составляет 3,6 ГВт. Предполагается, что к 2020 году этот показатель будет составлять 18,0 ГВт.

– Крупнейший ветропарк Индии, Jaisalmer, генерирующий более 1 ГВт электроэнергии. Владелец ветропарка, компания Suzlon Energy, также является и производителем оборудования, занимающая на мировом рынке ветровых турбин около 7%.

До недавнего времени лидерами в производстве «ветряков» считались европейские страны Германия и Дания, а также Соединенные Штаты Америки. Наиболее востребованные ветрогенерационные установки выпускались под марками Vestas (Дания) и Enercon (Германия). Эти компании занимаются выпуском турбин мощностью от 0,8 до 7,5 МВт. Американские ветрогенераторы General Electric имеют максимальную мощность 3,6 МВт.

В последний год рекордную прибыль показали китайские производители. В частности, чистая прибыль компании Goldwind за 2015 год выросла почти на 56%, достигнув показателя 436 млн. USD. Общая мощность реализованных за год ветрогенераторов Goldwind составляет 7,8 ГВт. Однако утверждать, что традиционному доминированию Vestas и GE на мировом рынке положен конец нельзя, так как своим блестящим результатам Goldwind обязан, прежде всего, внутреннему рынку Китая. Общая мощность установленных турбин Vestas в 2015 году составила 7,3 ГВт. Для американцев GE этот показатель равен 5,9 ГВт. Немецкий производитель Enercon занимает в рейтинге четвертое место. Помимо Goldwind в десятку крупнейших производителей «ветряков» в 2015 году вошли еще 4 компании из Китая.

Возможности России в генерации ветровой энергии (которые в настоящее время практически не используются) оцениваются в 30% от общего электроэнергетического потенциала страны. Суммарный показатель мощности ветропарков России, который планируется достигнуть к 2020 году составляет 3 ГВт.

В настоящее время крупнейшие ветропарки России расположены в Крыму (общей мощностью около 60 МВт), в Калининградской области (5 МВт), на Чукотке и в Башкортостане (по 2,2 МВт). В различной степени готовности находятся проекты ветроэлектростанций мощностью от 30 до 70 МВт в Ленинградской, Калининградской областях, в Краснодарском крае, в Карелии, на Алтае и Камчатке. В самом ближайшем будущем планируется строительство ветропарка мощностью 35 МВт в Ульяновске.

Мировая ветроэнергетика за 10 последних лет в разы увеличила свои мощности. Это можно объяснить несколькими факторами.

С появлением персональных компьютеров появились и соответствующие программы, стандартизирующие и упрощающие учёт многих факторов, влияющих на скорость ветрового потока на месте. Обладая данными программами, навыками работы с ними, а также достоверной исходной информацией можно, посчитать прогнозируемую выработку ветроэлектрической станции (ВЭС) любой мощности, сложности и конфигурации. Законодателями в этой области компьютерного моделирования стали программы WAsP и WindPro. Для всех крупных регионов уже давно построены вероятностные характеристики, с большой степенью точности, показывающие вероятность присутствия того или иного значения скорости ветрового потока. В качестве исходной информации по значениям скорости ветрового потока уже давно нет необходимости иметь многолетние наблюдения за скоростью ветра.




Глава 1. Ветер как источник энергии


Ветроэнергетика – это отрасль энергетики, специализирующаяся на использовании кинетической энергии ветрового потока. Ветер представляет собой движение воздуха в атмосфере, возникающее под действием различных факторов. Прежде всего он возникает от разности давлений у поверхности Земли и границы атмосферы. Возникает также разность давлений в горизонтальной плоскости – барический градиент, который вынуждает воздух перемещаться в горизонтальном направлении. Неравномерный нагрев атмосферы, земной поверхности и мирового океана из-за солнечной радиации, вращение Земли и связанное с ним действие сил Кориолиса также оказывают воздействие на поток воздуха. В области экватора воздух нагревается и поднимается вверх. Верхние слои движутся в направлении полюсов, там охлаждаются и опускаются к Земле. Вместе с тем, существуют зоны стабильных ветров – пассатов, которые находятся в области, лежащей между 25 и 30 северной и южной широтами соответственно. Постоянный западный ветер дует с запада на восток в полосе от 40 до 60 южной широты. Постоянно дующими ветрами являются муссоны в Индийском океане.

Основные характеристики ветра – скорость и его направление крайне изменчивы и зависят от многих факторов, а именно: рельеф местности, удаленность от берегов и океанов, климатические зоны и т.д. Скорость ветра может меняться в широких пределах: от легкого дуновения до урагана (около 100 м/с). Колоссальная энергия ветра может нанести громадный ущерб в виде разрушенных при ураганах зданий, линий передач и т.д. или может быть использована в народнохозяйственных целях. Мощность высотных потоков ветра (на высотах 7-14 км) примерно в 10-15 раз выше, чем у приземных. Эти потоки обладают постоянством, почти не меняясь в течение года. Возможно использование потоков, расположенных даже над густонаселёнными территориями (например – городами), без ущерба для хозяйственной деятельности. Природно-техническая система с ВЭУ представлена на рис.1.Таким образом, можно сделать обобщающий вывод о том, что ресурс ветроэнергетике достался не постоянный и существенно подверженный влиянию местных условий.








Рис.1 Природно-техническая система с ВЭУ



Ветер как источник энергии характеризуется, прежде всего, скоростью. Скорость ветра в данном месте очень непостоянная величина. Для нее характерны быстрые изменения (порывы) и медленные (погодные, суточные, сезонные). Поэтому данное место характеризуют среднегодовой скоростью ветра. Обычно в справочниках на основании данных метеостанций приводятся скорости ветра на высоте 10 м. Для сооружения крупной (ВЭУ) предпочтительно знать скорость ветра на высоте 80 – 100 м. Кинетическая энергия потока воздуха E (Дж), занимающего объем V(м


), имеющего плотность ? (кг/м


) и движущегося со скоростью w (м/с), определяется по формуле:








Обычно в ветроэнергетике используется рабочий диапазон скоростей ветра, не превышающих 25 м/с. Эта скорость соответствует 9-балльному ветру (шторм) по 12-балльной шкале Бофорта. Ниже для указанного рабочего диапазона скоростей ветра приведены значения удельной мощности Nуд:








С помощью ветроэнергетических установок (ВЭУ) в механическую энергию может быть преобразована только часть энергии ветрового потока. Отношение кинетической энергии ветрового потока Eв, преобразованной с помощью ветровой турбины в механическую энергию, к кинетической энергии невозмущенного ветрового потока E называется коэффициентом мощности или коэффициентом использования энергии ветра – Ср. Коэффициент использования мощности иногда называют критерием Жуковского-Бетца по имени двух учёных, которые теоретически обосновали его предельное (идеальное) значение 0,593.








Для каждой ВЭУ можно выделить следующие три характерных значения рабочей скорости ветра:

Wminр, при которой 0?w?wminр и мощность ВЭУ равна нулю;

wNр, при которой wminр?w?wNр и мощность ВЭУ меняется в зависимости от скорости ветра и частоты вращения ротора;

wmaxр, при которой w>wmaxр и мощность ВЭУ равняется нулю за счет принудительного торможения ротора.

Для ориентировочных расчетов в диапазоне скоростей ветра от wminр до wNр полезная мощность ВЭУ для заданных скорости ветра w на высоте башни Hб(м) и диаметре ротора ВЭУ w (м) рассчитывается по формуле:








где S = ?D2/4; ?р— КПД ротора (около 0,9); ?г— КПД электрогенератора (около 0,95); Ср – коэффициент мощности, обычно принимаемый равным 0,45 в практических расчетах; ? = 1,226 кг/м




После подстановки всех указанных значений в формуле получаем для ориентировочных расчетов:










Для малых ВЭУ wminр находится обычно в пределах 2,5–4 м/с, а wNр – от 8 до 10 м/с. Для крупных ВЭУ указанные значения составляют 4–5 и 12–15 м/с.

Для реальных современных ВЭУ Ср лежит в диапазоне 0,38…0,48. Для получения электрической мощности ВЭУ вышеприведённое выражение необходимо ещё умножить на произведение механических (редуктор, подшипники и т п.) и электрических (генератор, трансформатор и т. п.) КПД элементов силового тракта ВЭУ. Обычно для современных ВЭУ суммарный КПД элементов можно принимать в диапазоне 0,90…0,93.

Для разработки конструкции ветроколеса (ВК), кроме параметра, – коэффициент использования мощности–Ср, используется еще один важный параметр – коэффициент быстроходности-?.

Быстроходность ветроколеса представляет собой отношение линейной скорости конца лопасти к скорости набегающего потока и служит аэродинамической характеристикой ветроколеса. При оптимальной быстроходности лопасть ветроколеса не попадает в поток, турбулизированный предыдущей лопастью. Этот поток успевает покинуть область ветроколеса. В то же время воздух не проходит через сечение ветроколеса свободно, без взаимодействия с его лопастями. Типовые зависимости коэффициента использования энергии ветра Ср от быстроходности ВК ? для различных типов ВЭУ представлены на рис.2.

Быстроходность важна тем, что для получения электрического тока приемлемого качества (~50Гц) необходимо, что бы быстроходность ВК была как можно больше. Больше линейная скорость конца лопасти, т. е. больше частота вращения ВК, т. е. больше число оборотов генератора, т. е. ток, вырабатываемый этим генератором ближе к желаемым 50 Гц. На практике недостающие обороты, помимо быстроходности «добирают» применением редукторов (коробки передач, повышающей число оборотов на валу генератора), применения многополюсных генераторов, использованием электрических схем повышающих частоту переменного тока и т. п.

Быстроходность остаётся одним из определяющих понятий для выбора типа ВЭУ. Оперируя этими двумя важными параметрами и глядя, на вышеприведённый график можно рассуждать о том, почему же в современной ветроэнергетике в подавляющем большинстве случаев применяют трёхлопастные горизонтальноосевые башенные ВЭУ, использующие подъёмную силу. ВК использующие подъёмную силу имеют больший коэффициент использования мощности, чем использующие силу сопротивления при достаточно большом коэффициенте быстроходности. Башенные – потому что позволяют использовать ветровой поток на высоте 100 м от земли, горизонтальноосевые по тем же причинам (наилучшее соотношение ? с Ср ). А вот с тремя лопастями вопрос остаётся открытым. Казалось бы, двухлопастные ВК имеют наилучшее соотношение ? с Ср , а применяются крайне редко. Точнее в «большой» ветроэнергетике вообще практически не применяются. Причин две: при слишком высоком ? может возникнуть такая ситуация, когда конец лопасти уйдёт в так называемый флаттерный режим при превышении скорости звука (~340 м/с); двухлопастные ВК подвержены сложным динамическим нагрузкам (биение) связанным с двухполюсностью (по числу лопастей) ВК. В то время как трёхлопастные ВК более равномерно распределяют нагрузки от лопастей на три полюса. С другой стороны, становится понятным, почему для получения механической энергии (момент на валу) при, например подъёме воды из используются многолопастные ВЭУ. При неплохом Ср он имеет крайне низкий ?, т. е. вращается крайне медленно, но, по закону сохранения момента количества движения с максимально возможным для ВЭУ усилием.








Рис.2Главные энергетические характеристики наиболее распространенных ветродвигателей



Существуют два способа регулирования мощности. Первый способ – поворотом лопасти относительно направления ветра, изменяя так называемый «угол атаки», то есть угол, под которым ветер набегает на лопасть и от которого зависит «подъемная» сила лопасти, которая преобразуется в ее вращение. Этот способ по-английски называется «питч-регулирование» (pitch – «ставить», то есть лопасть принудительно ставится в определенное положение). Ветроустановки (http://www.solarhome.ru/equipment/wind) с поворотом лопастей можно использовать для регулирования мощности как в зависимости от скорости ветра, так и по заданию диспетчера. При этом наибольшая возможная мощность определяется скоростью ветра.

Второй способ заключается в том, что профиль лопасти выполняется различным по длине. В результате при увеличении скорости ветра на отдельных частях лопасти наступает, срыв потока и ее «подъемная» сила уменьшается. Таким образом, при скорости ветра выше номинальной удается держать мощность ветроустановки равную номинальной. Способ называется «стол» (stall – «застревать»), то есть часть потока ветра как бы застревает и не производит работу. В ветроустановках такого типа принудительно регулировать мощность нельзя. И это их недостаток. Но их достоинство состоит в том, что не нужен сложный механизм поворота лопастей. Тем не менее, практически во всех мощных ВЭУ используется первый способ. Коэффициент использования энергии ветра Ср зависит от многих конструктивных особенностей, но, в конечном счете, от профиля лопасти и от степени ее шероховатости, а также от соотношения между скоростью вращения лопастей и скоростью ветра, называемом коэффициентом быстроходности. Этот коэффициент определяет, в конечном счете, экономичность ветроустановки.

Ветроустановку характеризуют следующие параметры ветра:

– стартовая скорость ветра, обычно в диапазоне от 2,5 до 4,0 м/с, при которой ВЭУ начинает вращение;

– номинальная скорость ветра, обычно от 10 до 14 м/с, при которой мощность ветроустановки достигает номинального значения;

– максимальная скорость ветра, при которой ветроустановка отключается от сети и останавливается, обычно в диапазоне 20-25 м/с.

Существует еще так называемая «буревая скорость ветра». Это скорость, при которой остановленная ветроустановка не должна разрушаться (обычно от 60 до 80 м/с).

Принято считать, что крупные ВЭУ целесообразно устанавливать в месте, где среднегодовая скорость ветра не ниже 5 м/с. Для оценки количества электроэнергии, которое будет произведено данной ВЭУ за год, необходимо также знать усредненную по многолетним наблюдениям вероятность наличия ветра с той или иной скоростью. На этом основании вычисляется коэффициент использования установленной мощности (Киум) и представляет собой отношение действительной выработки электроэнергии к максимально возможной, т. е. максимальное значение коэффициента равно единице или 100%. Для традиционных электростанций он колеблется от 0, 4 до 0, 8. Что касается ветростанций, то их Киум в Европе в среднем составляет 0,2-0,3, но зависит он в основном от ветровых условий. Есть примеры ВЭС, где он равняется 0,4 и выше. Для благоприятных мест с более или менее постоянным ветром (ущелья, горные хребты, шельф) этот показатель может достигать 3000 ч/год (коэффициент использования установленной мощности около 0,3).

По величине энергии проходящей на один кв. метр обметаемой поверхности существует подразделение местности на семь классов. Фактически это подразделение местности по среднегодовой скорости ветра на высоте 50 м над поверхностью. Названия классов и их характеристика приводятся в таблице 1.

Эти данные являются ориентиром для выбора площадки сооружения ВЭС большой мощности. Для ВЭУ малых мощностей это не является решающим фактором. Срок энергетической окупаемости ветроустановки (или любой другой электростанции) —это термин, обозначающий за какое время ветроустановка (или электростанция другого типа) выработает количество энергии, равное количеству, затраченному на её производство, монтаж (строительство), обслуживание и утилизацию. По оценкам Британской и Американской ветроэнергетических ассоциаций этот срок для ВЭУ составляет от трёх до восьми месяцев (в зависимости от среднегодовой скорости ветра) – это один из самых коротких сроков всех видов электроустановок, тогда как для угольных и атомных электростанций он составляет шесть и более месяцев.

Другая оценка этого явления – «коэффициент энергетической эффективности» – это отношение энергии, выработанной ветроустановкой (или любой электростанцией) за срок службы к энергии, затраченной на производство установки, строительство, обслуживание и утилизацию ветроустановки (или любой другой электростанции). По исследованиям университетов США, коэффициент энергетической эффективности ветростанций Среднего Запада Америки составил от 17 до 39 (в зависимости от среднегодовой скорости ветра. В то время как для атомных электростанций он оказался равным – 16, а для угольных – 11.

Таблица 1. Классификация ветроэнергетических ресурсов на высотах 10 и 50 м от поверхности земли



Класс

Высота 10 м

Высота 50 м



Скорость ветра, м/с

Удельная мощность, Вт/

Скорость ветра, м/с

Удельная мощность, Вт/



1

0–4,4

0–100

0–5,6

0–200



2

4,4–5,1

100–150

5,6–6,4

200–300



3

5,1–5,6

150–200

6,4–7,0

300–400



4

5,6–6,0

200–250

7,0–7,5

400–500



5

6,0–6,4

250–300

7,5–8,0

500–600



6

6,4–7,0

300–400

8,0–8,8

600–800



7

7,0–9,0

400–1000

8,8–11,9

800–1200



Ветроустановки рассчитываются на срок службы 20-25 лет. В течение этого срока из основных механизмов возможна замена лопастей




Глава 2. Классификация ветроэнергетических установок



Трудно найти другую область науки и техники, где было бы зарегистрировано столько же патентов на конструкции ветроэнергетических установок, а в особенности конструкций ветроколёс (ВК). Дадим такую укрупнённую классификацию конструкций ВК:

–использующие подъёмную силу – Y;

–использующие силу сопротивления X.

1. Использующие подъемную силу. Данные ВЭУ преобладают в мировой ветроэнергетике, т.к. могут развивать линейную скорость конца лопасти (совпадает с направлением действия подъёмной силы Y), значительно больше скорость ветрового потока V. Прямоугольник аэродинамических сил, действующих на крыло представлен на рис.3. В аэродинамический каплевидный профиль сечения лопастей ветроколеса и ветроротора под воздействием ветрового потока обеспечивает подъемную силу на лопастях за счет возникновения разности скоростного течения ветровых струй вдоль их плоскостей. Преобразование подъемной силы лопастей и, соответственно, крутящего момента на приводном валу ветроколеса или ветроротора в механическую энергию обеспечивается редуктором-мультипликатором, а затем, при необходимости, электрогенератором в электроэнергию

Ветроколеса современных ветроагрегатов собираются из нескольких лопастей, закрепленных на втулке. Лопасти имеют аэродинамический профиль, при обтекании которого возникает подъемная сила, вращающая ветроколесо. Расчет и проектирование ветроколеса базируется на законах аэродинамики, изучающей движение воздуха и его взаимодействие с поверхностью крыла при его обтекании.








Рис. 3 Прямоугольник аэродинамических сил, действующих на крыло



Верхний и нижний контуры сечения крыла имеют различную конфигурацию. Проходя у нижнего контура крыла, поток воздуха замедляется из-за трения. В этой части создается зона повышенного давления. Огибая более протяженный верхний контур, поток ускоряется и над крылом создается зона пониженного давления. Разность давлений под крылом и над ним обуславливает возникновение подъемной силы R и вращающего момента на ветроколесе.

В свою очередь ВЭУ, использующие подъёмную силу, могут быть классифицированы по:

1.ориентации оси вращения ВК;

2.положению ВК относительно всей конструкции.

Большинство типов ветродвигателей делятся на две группы:

– ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5),

– ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)), рис.4.

.




Рис.4 Типы ветродвигателей

Типы крыльчатых ветродвигателей отличаются только количеством лопастей. Основные компоненты ВЭУ с горизональными и вертикальными осями представлены на рис. 5.




2.1. Ветроустановки с вертикальной осью вращения


Ветроколесо в установках с вертикальной осью вращается вокруг оси, перпендикулярной направлению потока. Данные механизмы наделены рядом существенных особенностей перед ветряками с горизонтальной осью. У них нет как таковых узлов под ориентирование на ветровой поток. Из-за своего строения, при абсолютно любом направлении ветра, конструкция располагается в абсолютно произвольном положении, ввиду чего, она более проста в своём исполнении. В подобных механизмах возникновение вращения создаёт подъемная сила лопастей, а также силы сопротивления.










Рис.5 Основные компоненты ВЭУ с горизональными и вертикальными осями



Такие установки появились в 30-х годах прошлого столетия. Наиболее известными из них являются ротор Дарье с изогнутыми лопастями, рис. 6 а, ротор Савониуса, рис.6 б, ортогональные ветроустановки с прямыми вертикальными лопастями (ротор Масгрува), рис.6 в.










Рис.6 Ветроустановки с вертикальной осью вращения

лопастей вокруг оси. Кинетическая или внутренняя энергия рабочего тела (газа или жидкости) преобразуется в механическую работу. У ротора Дарье ось вращения расположена перпендикулярно потоку источника энергии. Многочисленные конструкции с вертикальной осью вращения объединяются в основные группы:

– ветрогенератор с ротором Дарье,

– ортогональное устройство;

– генератор на роторе Савониуса;

– многолопастная конструкция с направляющими элементами;

– геликоидный ротор;

–вертикально-осевая конструкция ротора.

Ветрогенератор с ротором Дарье выполнен с двумя или тремя лопастями, изогнутыми в форме овала, рис.7.






Рис.7 Схема работы ветровой турбины Дарье

Работа ветровой турбины Дарье основана на принципе вращения лопастей вокруг оси. Кинетическая или внутренняя энергия рабочего тела (газа или жидкости) преобразуется в механическую работу. У ротора Дарье ось вращения расположена перпендикулярно потоку источника энергии. Принцип работы конструкции ротора Дарье основан на разности аэродинамических показаний. Благодаря этому обеспечивается вращение лопастей механизма. После того как образовалась циркуляция потоков воздуха, устройство начинает вращаться бесперебойно. На каждое крыло по отдельности воздействует сила подъема относительно воздушного потока. Показатели этой силы зависят от угла, который образовывается между лопастью и величиной скорости потока ветра. Момент силы, который образуется в момент запуска, носит переменный характер, а не постоянный. Существует три типа ротора Дарье, рис. 8: классический, лопасти имеют форму полумесяца, их размер достаточно большой, сравним с длиной основной оси; тип Н, три крыла его имеют прямую форму, которые расположены под прямым углом относительно горизонтальных опор, и находятся на верхнем отсеке конструкции; винтообразный тип, лопасти, которого изготовлены в виде изогнутых спиралей. Ротор Н-образного типа быстроходен, эффективен с полным отсутствием инфразвука, прост в сборке и ремонте, дешевле и, поэтому распространен в применении. Он надежней классической ветровой турбины Дарье. Лопасти винтообразного типа изготовлены в виде изогнутых спиралей, которые расположены на верхнем отсеке несущей оси вращения. Благодаря закрученной форме крыльев, вращение ротора происходит равномернее, поэтому нагрузка на несущие узлы снижается, а срок службы механизма увеличивается.








Рис.8 Типы ротора Дарье

Достоинством роторов Дарье являются самостоятельная ориентация на направление воздушного потока; основной вал привода располагается вблизи уровня земли, что создаёт удобство в его обслуживании; простая кинематическая схема конструкции. Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы, так как она самостоятельно запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю. Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна, поэтому он стоит дорого. Для обеспечения работы бытовых электростанций чаще всего используется ротор Савониуса-Дарье. Такое название носит ветровая турбина, совмещенная с ротором Савониуса, который выступает в роли стартёра (устройства запуска). Комбинированная конструкция отличается большей мощностью и производительностью по сравнению с «чистыми» типами. Область применения механизма не ограничивается только электростанциями – он может быть совмещен с тепло генератором и быть использован в системе теплоснабжения. А еще такой гибрид соединяют с насосами и применяют для закачки и откачки воды. Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы. Самостоятельно она запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю. Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна. 2.Генераторы с ротором Савониуса. Этот вид генератора имеет довольно широкое использование для качественного функционирования бытовых электростанций. По своей конструкции подобный ротор является ветроколесом с несколькими полуцилиндрами, которые непрерывно вращаются вокруг своей оси, рис.9

.




Рис.9 Генератор с ротором Савониуса

3.Генераторы на многолопастном роторе с направляющими элементами. Этот вид генератора считается самым функциональным из вертикальных роторов. Подобная производительность достигается путём использования дополнительного ряда лопастей. Надо признать, что они более сложны в изготовлении, но они и самые эффективные из всех рассмотренных ветрогенераторов. Их ротор состоит из двух рядов лопастей. Наружный ряд лопастей закреплен неподвижно, но с некоторым углом поворота к центру оси, рис.10.








Рис.10 Многолопастной ротор

Это создает постоянное направление ветра, проходящего сквозь наружный ряд лопастей. Щели между наружными лопастями уплотняют и усиливают поток воздуха, который давит на внутренний, движущийся ряд лопастей. За счет этой конструкции ВЭУ, она начинает крутиться от легкого ветерка со скоростью 0,2 метра в секунду. Его номинальная мощность достигается всего при 3 м/сек.4.Генераторы с геликоидным ротором, рис.11. Ветряки с геликоидным ротором, имеют второе свое название: ротор Горлова. Фактически это модификация ортогонального ветрогенератора с закрученными лопастями и их винтовым сечением. В этом случае механизм ВЭУ движется более плавно, а опорные подшипники генератора не испытывают вредных разнонаправленных сил. За счет этого вся механика становится более долговечной. Но производство сложных винтовых лопастей делает эту ВЭУ дороже чем простые ортогональные ветрогенераторы.








Рис.11 Геликоидный ротор

5. Вертикально-осевая конструкция ротора. Конструкция ветродвигателя, использует для создания крутящего момента комбинацию подъемной силы крыла и дифференциального лобового сопротивления. В установке, приведенной на рис.12, ротор Савониуса используется для раскрутки ротора Дарье до необходимой быстроходности.








Рис.12 Вертикально-осевая конструкция ротора

С точки зрения исследователя, существенным отличием вертикально-осевой ВЭУ от горизонтально-осевой является то, что для ВЭУ с вертикальной осью вращения аэродинамический момент, вращающий ротор, зависит не только от угловой скорости ротора, но и от значения угла поворота по отношению к направлению скорости ветра. Современная волна интереса к вертикально-осевым ВЭУ объясняется рядом объективных причин: практически исчерпанные резервы развития горизонтально-осевых ВЭУ (как концептуально, так и технически – более крупные установки строить при современном уровне развития технологий уже невозможно), относительно высокие энергетические характеристики отдельных конструкций ВО ВЭУ при значительно более простой конструкции, не требуют в большинстве случаев наведения на ветер и относительно низкий уровень шумов и вибраций. Вертикальные роторы без последствий переносят резкие порывы ветра, вплоть до бури. Нормально работают в условиях снегопадов и обледенения. Невысокая минимальная рабочая скорость ветра (система начинает работать при скорости ветра в 2-2,5 м/с. Они выходят на номинальную мощность при скорости всего 3-4 м/сек. Доступность разнообразных мест установки ветрогенератора. Это могут быть крыши зданий, платформы, осветительные столбы или передвижные бытовки. Бесшумность движения вращающихся деталей, при любом ветре. Без флюгерной системы, ВЭУ легко ловит разнонаправленный ветер. Относительно небольшая рабочая скорость вращения, до 200 оборотов в минуту, продлевает работоспособность всех подшипников механизма, увеличивает срок между обслуживаниями установки. Минимальное количество движущихся элементов и неподвижно закрепленный внизу генератор установки. Это упрощает его осмотр и обслуживание без прекращения работы. Вертикальная ВЭУ позволяет использовать любой низовой ветер, турбулентность, сквозняк вдоль улицы или между многоэтажками. Возможность применения ВЭУ в местах нестабильного снабжения электроэнергией или там, где она отсутствует вообще. Ветроэлектрическая установка удобно располагается в местах, где запрещены высокие строения. Возможность применения конструкций меньших размеров, рабочие элементы располагаются близко к земле, что облегчает их обслуживание. К недостаткам систем с вертикальной осью относятся: из-за потерь на вращении против потока воздуха эффективность работы большинства ветрогенераторов с вертикальной осью вращения почти в два раза ниже, чем с горизонтальной, некоторые элементы системы находятся внизу и соответственно, под весом конструкции, то их ремонт или замена могут быть невозможны без демонтажа всей конструкции, если такое не предусмотрено конструкцией конкретного генератора. Запоздалое освоение осевых вертикальных ветроустановок вызывается рядом причин: – осевые вертикальные ветроустановки изобретены были несколько позже осевых горизонтальных установок (в 1929 году – ротор Савониуса, в 1931 году – ротор Дарье, в 1975 году – ротор Масгроува); – основным недостатком осевых вертикальных ветроустановок до последнего времени ошибочно считалась невозможность получения для них соотношения более единицы линейной максимальной лопастной скорости к ветровой скорости (для осевых горизонтальных ветроустановок такое соотношение составляет более 5:1). Данная предпосылка, верна лишь для роторов тихоходного типа (ротор Савониуса), которые используют разные сопротивления лопастей при своем движении против ветра и по ветру, привела в итоге к неправильным теоретическим выводам о более низком предельном коэффициенте употребления энергии ветра у осевых вертикальных ветроустановок, чем у осевых горизонтальных. Именно из-за этого, разработка осевых вертикальных ветроустановок не велась практически сорок лет. Только в 60-70-х годах было доказано экспериментами, изначально канадскими, а затем английскими и американскими специалистами, что данные выводы к роторам Дарье неприменимы, которые используют подъемную мощь лопастей. Для таких роторов, максимальное соотношение рабочих органов линейной скорости к ветровой скорости составляет 6:1 и может быть выше, а коэффициент применения энергии ветра ничем не ниже коэффициента осевых горизонтальных ветроустановок. Интенсивно осваивать осевые вертикальные ветроустановки стали в начале 80-х годов, при этом область распространения их мощностей расширяется беспрерывно. На сегодняшний день, уже почти все страны используют осевые вертикальные ветроустановки с ротором типа Дарье, например в США, Канаде, Нидерландах отдается предпочтение схеме классической, с лопастями криволинейными, а в Румынии и Великобритании, основной схемой числятся роторы с лопастями прямыми, которые параллельны вращающейся оси (крупная установка VAWT-2400, ротор диаметром в 67 метром, мощность 1.7 МВт). Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование – использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов – повышающий редуктор, не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем откуда дует ветер, что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. К ВЭУ, использующие силу сопротивления, можно отнести установки, использующие парусные ветроустановки и ветротурбины чашечного типа. Человечество использует паруса уже много тысяч лет и будет служить людям до тех пор, пока дует ветер. Парусные ветроустановки очень чувствительны, они работают с самого низа диапазона скоростей ветра, начиная буквально от штиля, с 1-2 метров в секунду, а это намаловажный фактор в условиях, где ветер редко бывает больше 3-5 метров в секунду. Еще одним достоинством парусных ветроустановок является удивительная простота его конструкции. Они практически разрабатываются в двух вариантах: с круговыми парусными лопастями и с круговым парусным колесом. Ветрогенераторы первого исполнения используют парусные лопасти треугольной формы. Форма треугольника подбирается индивидуально, в зависимости от силы ветра в данной местности. Во многих случаях из-за простоты используют заваленный прямоугольный треугольник, рис.13, хотя для промышленного изготовления более технологичными будут парусные лопасти в виде равнобедренных треугольников, рис.14. К ступице прикреплены «мачты», обычно из от 8 до 24-х. А от мачт отходят косые паруса из прочной тонкой материи, как правило, синтетической. Другая часть паруса крепится шкотами, которые выполняют и роль регуляторов угла поворота парусов и роль противоштормовой защиты.








Рис.13 Ветрогенератор с круговыми парусными лопастями










Рис.14 Ветрогенератор с круговым парусным колесом.



Не вдаваясь в подробности аэродинамики, можно сказать, что парусные ветроустановки одни из самых простых, но в тоже время одни из самых неэффективных. КИЭВ парусного ветряка не может быть выше 20% даже теоретически. Это означает, что вы будете получать только 1/5 часть мощности ветрового потока, попадающего на лопасти парусной установки. Например, если ветер дует со скоростью 5 м/с, а установка 5 метров в диаметре, то мощность ветрового потока будет около 1500 Вт, реально можно снять с установки только 300 Вт (в лучшем случае). Таких недостатков лишен парусный ветрогенератор с парусным колесом, разрабатываемый и производимый фирмой Saphon Energy (Тунис). В генераторе Saphonian лопасти и вращающиеся части отсутствуют, рис.15.








Рис.15 Парусный ветрогенератор Saphonian

С помощью воздушных клапанов парус ветрогенератора совершает возвратные высокочастотные колебательные движения. При помощи механической системы эти колебания воспринимаются поршнями гидравлической системы, которые преобразуют энергию получаемой энергии в давление несжимаемой жидкости. Именно энергия давления этой жидкости и используется в дальнейшем для вращения вала электрогенератора. КИЭВ генератора Saphonian в 2 раза превышает эффективность лопастных парусных генераторов. И хотя, строго говоря, Saphonian не представляет собой парусный ветрогенератор в «чистом» виде, его принцип работы заслуживает самого широкого рассмотрения и внедрения. Ветротурбина чашечного типа, рис.16, также использует силу давления ветра. Ветроустановки, использующие силу давления ветра, имеют право на жизнь, но наукой и опытом давно доказана их очень низкая эффективность по сравнению с пропеллерными или другими, использующими, подъемную силу крыла.








Рис.16 Ветротурбина чашечного типа

2.2. Ветроустановка с горизонтальной осью вращения

В ветряках с горизонтальной осью вращения роторный вал и генератор располагаются наверху, при этом система должна быть направлена на ветер. Малые ветряки направляются с помощью флюгерных систем, в то время как на больших (промышленных) установках есть датчики ветра и сервоприводы, которые поворачивают ось вращения на ветер. Большинство промышленных ветрогенераторов оснащены коробками передач, которые позволяют системе подстраиваться под текущую скорость ветра. В силу того, что мачта создает турбулентные потоки после себя, ветроколесо обычно ориентируется по направлению против воздушного потока. Лопасти ветроколеса делают достаточно прочными, чтобы предотвратить их соприкосновение с мачтой от сильных порывов ветра. Для ветряков такого типа не нужны установки дополнительных механизмов ориентации по ветру. Ветроколесо может быть выполнено с различным количеством лопастей. По геометрии ветроколеса можно выделить установки многолопастные (18-24) с большим геометрическим заполнением и с малым заполнением (1-3 лопасти). Геометрическое заполнение представляет собой отношение суммарной площади всех лопастей к площади круга, очерчиваемого вращающимися лопастями. Как правило многолопастные агрегаты отличаются малой скоростью вращения, но даже при низкой скорости ветра способны развивать большой крутящий момент, необходимый для привода различных рабочих органов – насосов для перекачки воды и других устройств. Одно- трехлопастные роторы вращаются с большой скоростью и соединяются главным образом с электрогенераторами. Ветроколеса с горизонтальной осью вращения выполняют иногда фиксированными по направлению, т.е. они не могут вращаться относительно вертикальной оси, перпендикулярной направлению ветра. Такой тип ветрогенераторов используется лишь при наличии одного господствующего направления ветра. В большинстве же случаев система, на которой закреплено ветроколесо (так называемая головка), выполняется поворотной, ориентирующейся по направлению ветра. У малых ветрогенераторов для этой цели применяются хвостовые оперения, а у больших ориентацией управляет электроника. Для ограничения частоты вращения ветроколеса при большой скорости ветра применяется ряд методов, в том числе установка лопастей во флюгерное положение, использование клапанов, которые стоят на лопастях или вращаются вместе с ними, и др. Лопасти могут быть непосредственно закреплены на валу генератора, либо вращающий момент может передаваться от его обода через вторичный вал к генератору или другой рабочей машине. В настоящее время высота мачты промышленного ветрогенератора варьируется в диапазоне от 60 до 90 и более метров. Ветроколесо совершает 10-20 поворотов в минуту. В некоторых системах есть подключаемая коробка передач, позволяющая ветроколесу вращаться быстрее или медленнее, в зависимости от скорости ветра, при сохранении режима выработки электроэнергии. Все современные ветрогенераторы оснащены системой возможной автоматической остановки на случай слишком сильных ветров. На рис.17 представлена ветроустановка с горизонтальной осью вращения. Такие ветроустановки имеют следующие основные достоинства: изменяемый шаг лопаток турбины, позволяющий по максимуму использовать энергию ветра в зависимости от атмосферных условий; высокая мачта позволяет «добираться» до более сильных ветров; высокая эффективность, благодаря направлению ветроколеса перпендикулярно ветру. Однако, для этого требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Коэффициент использования энергии ветра у крыльчатых ветродвигателей намного выше, чем у карусельных. В то же время, у карусельных – намного больше момент вращения. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.






Рис.17 Ветроустановка с горизонтальной осью вращения

Пути повышения энергетических показателей ВЭУ заключаются или в увеличении коэффициента использования энергии ветра, или в увеличении площади ометаемой ветродвигателем поверхности непропорционально большим относительно оптимальной мощности электрогенератора. Последний вариант влечёт за собой некоторое удорожание ВЭУ. Одним из направлений повышения эффективности ВЭУ является разработка роторного ветродвигателя, работа которого основана на эффекте возникновения подъемной силы во вращающемся в ветровом потоке цилиндра вокруг своей оси, нормальной к ветровому потоку (эффект Магнуса). Ветроколесо роторной установки вместо традиционных лопастей имеет в своем составе вращающиеся цилиндры или конусы, принудительно вращающиеся от вспомогательного привода, что позволяет получить получить энергию при более низких скоростях ветра, рис.18.

К преимуществам систем с горизонтальной осью вращения относятся следующие:

– изменяемый шаг лопаток турбины позволяет использовать энергию ветра по максимуму в зависимости от времени дня и сезона,

– высокая мачта позволяет преобразовывать энергию ветра на большем расстоянии от земли, так как с увеличением высоты на каждые 10 м скорость ветра на 20% и соответственно увеличивается энергоэффективность ветроустановки,

– высокая эффективность благодаря тому, что ветроколесо всегда направляется перпендикулярно ветру, используя весь поток воздуха.

.




Рис.18 Роторная ветроустановка



К основным недостаткам систем с горизонтальной осью вращения относятся:

– необходимость высоких массивных мачт (свыше 100 м) и длинных лопастей, которые трудно транспортировать, в результате расходы на транспортировку и монтаж могут достигать 20% стоимости всего оборудования,

– для сооружения промышленных ветрогенераторов большой мощности требуется специализированное оборудование и высоко квалифицированные сотрудники, поэтому их производство осуществляется в ограниченном количестве стран,

– из-за их размеров наблюдаются возмущения в радиосигналах и связи,

– необходимость в установках системы направления оси на ветер.




2.3. Классификация ветроэнергетических установок


В Российской Федерации классификация ветроэнергетических установок по назначению определяется стандартом – ГОСТ Р 51990-2002 «Нетрадиционная энергетика. Ветроэнергетика. Установки ветроэнергетические. Классификация». ВЭУ классифицируют: по виду вырабатываемой энергии; по мощности; по областям применения; по назначению; по признаку работы с постоянной или переменной частотой вращения ветроколеса (ВК); по способам управления; по структуре системы генерирования энергии.

ВЭУ в зависимости от вида вырабатываемой энергии подразделяют на две группы: механические и электрические. Электрические ВЭУ, в свою очередь, подразделяют на ВЭУ постоянного и переменного тока.

ВЭУ в зависимости от мощности подразделяют на четыре группы:

а) большой мощности – свыше 1 МВт;

б) средней мощности – от 100 кВт до 1 МВт;

в) малой мощности – от 5 до 99 кВт;

г) очень малой мощности – менее 5 кВт.

В зависимости от области применения механические ВЭУ подразделяют на две подгруппы: ветронасосные и ветросиловые.

Электрические ВЭУ постоянного тока подразделяют на три подгруппы: ветрозарядные –зарядка аккумуляторных батарей (АК), гарантированного питания-гарантированное снабжение электроэнергией потребителей одновременно или отдельно от двух источников энергии ВК и АК и негарантированного питания – работа ВЭУ без АК, нагрузка питается через блок управления, имеющий регулятор напряжения.

Электрические ВЭУ переменного тока подразделяют по назначению, согласно таблице 2.

Таблица 2. Классификация ВЭУ по назначению








Общая схема классификации ВЭУ приведена на рис. 19.

.




Рис. 19 Общая классификация ВЭУ

Структурная схема автономных ВЭУ показана на рис. 20. Структурная схема гибридных

ВЭУ показана на рис.21, а сетевых ВЭУ – на рис.22.












Г – генератор; СГ – синхронный генератор; АГ – асинхронный генератор;

БС – балластное сопротивление; ПЧ – преобразователь частоты

Рис.20 Структурная схема автономных ВЭУ



Классификация по типу применяемой ветротурбины. В настоящее время применяются две основные конструкции ветроагрегатов: горизонтально-осевые и вертикально-осевые ветродвигатели. Наибольшее распространение получили ветроагрегаты первого типа.






СГ – синхронный генератор; АсГ – асинхронизированный генератор; ПЧ – преобразователь частоты

Рис. 21 – Структурная схема гибридных ВЭУ






СГ – синхронный генератор; АГ – асинхронный генератор; АсГ – асинхронизированный генератор; ПЧ – преобразователь частоты

Рис.22 – Структурная схема сетевых ВЭУ



Классификация по типу применяемой электромашины представлена на рис.23.








Рис.23 Классификация ВЭУ по типу применяемой электрической машины




Глава 3. Малая ветроэнергетика





3.1 Области применения ветроустановок



К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1кВт относятся к микро-ветряной энергетике. Они применяются на, с/х фермах для водоснабжения и т.д.

Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети. Обеспечение потребителей электроэнергией за счет ветроэлектрических установок (ветряков) напрямую зависит от наличия ветра в месте установки оборудования, его силы и постоянства. Разумеется, метеорологическая карта ветров очень приблизительно оценивает скорость ветра в том или ином регионе и, как правило, это среднегодовые осредненные данные. Поэтому необходимо оценивать возможность эффективной работы ветроустановки индивидуально в каждом конкретном случае. Во многом наличие и сила ветра зависят от рельефа местности, открытости пространства, присутствия вблизи водоемов, рек и т. п. Даже около высоких сооружений возможна весьма эффективная работа ветровых систем из-за возникновения эффекта «сквозняков» между зданиями. Более того, независимо от направления ветра «сквозняки» между зданиями, в лощинах, вдоль русла рек, в оврагах присутствуют практически всегда, и скорость ветра , как правило, достаточна для успешной работы ветроустановки. Поэтому, перед принятием решения о приобретении ветроэлектостанции целесообразно понаблюдать за ветром, Есть множество случаев, когда вам может понадобиться небольшое количество электроэнергии, например, освещения, механизм открывания ворот, предупредительные огни, подъем воды из скважины, показатели уровня воды и другие маломощные устройства. Для этих целей может быть применена ветроустановка с ротором Савониуса, рис.24, которая проста в изготовлении и может производить достаточно энергии для маломощных устройств.








Рис.24 Ветроустановка с ротором Савониуса



Ветроустановка мощностью 1.5 кВт, ВЭУ-1.5 представлена на рис. 25. Она может использоваться для питания светильников общественного и персонального освещения.

Портативная ветроэнергетическая установка благодаря малым размерам может легко транспортироваться на легковых автомобилях среднего класса. Может использоваться для приготовления пищи, обогрева жилища и т.д. Устанавливается без помощи грузоподъемных машин, двумя рабочими с помощью лебедки. Подключив ветроустановку к аккумуляторам, можно заряжать их в ветреную погоду и использовать их емкость во время безветрия. Выпускается с выходом 48В постоянного тока и 220В/50Гц переменного тока (с инвертором).






Рис.25 Ветроустановка мощностью 1.5 кВт.

Ветроустановка мощностью 3кВт, 4-лопастная, рис.26, могут использоваться для обеспечения энергопитания небольшого дома, удаленного объекта.






Рис. 26 Ветроустановка мощностью 3 кВт



Ветроустановка мощностью 30 кВт, представлена на рис. 27 может служить удобным автономным источником энергопитания для большого коттеджа, группы домов, офиса или небольшого цеха.

В России начаты разработки малых ветроэнергетических установок роторного типа, которые имеют диапазон рабочих скоростей ветра от 3 до 50 м/с и улучшенные экологические параметры: уменьшенный уровень шума, вибрации и воздействия на фауну местности.








Рис. 27 Ветроустановка мощностью 30 кВт



Опробованы экспериментальные образцы мощностью 1 кВт. На рис.28 представлен схематичный разрез роторного ветрогенератора, с комплектующими элементами и состоящего из осе совмещенных вертикальных роторных модулей, состоящих в свою очередь из кольцевых направляющих аппаратов, внутри которых на подшипниковых узлах установлены роторы, их выходной вал шлицевым соединением присоединен к валу электрогенераторов.












Рис. 28 Схема ВЭУ роторного типа



Направляющий аппарат забирает воздух из свободного потока, направляет на рабочие лопатки виндротора, обеспечивает активный выход отработанного воздуха из объема виндротора. Воздушный поток на лопатках виндротора реализует два своих параметра – динамический напор и скорость, чем определяются высокий момент, создающийся при трогании двигателя при низких скоростях ветра и высокая скорость набора нагрузки при росте скорости ветра. Благодаря двукратному изменению направления потока на лопатках роторов кинетическая энергия ветра с высоким КПД преобразуется в механическую энергию вращения вала роторов, которая электрогенератором преобразуется в электрическую.

К малым ветрогенераторам относятся парусные ветрогенераторы. Предлагаемые парусные ветрогенераторы предназначены для бесперебойного снабжения электроэнергией промышленных параметров 380/220/50 владельцев индивидуальных строений, агроферм и предприятий малого бизнеса и т.д. Типовые модели: 1кВт, 4кВт, 10кВт. Максимальная мощность – до 100кВт. Для подъема воды из любых водоисточников: скважины, колодца, открытого водоема без применения электропровода или двигателя внутреннего сгорания может быть использована технология с применением ветронасосной установки небольшой мощности (1,5-3 кВт). Ветронасосы бесшумны в работе, используют энергию ветра, не требуют постоянного контроля за их работой, удобны в эксплуатации, снабжены устройством, позволяющим качать воду при отсутствии ветра в ручном режиме. Позволяют подавать воду ритмичными порциями, и могут быть использованы при поливе участков по бороздам, капельным методом, дождеванием. При использовании емкости для накопления воды полив может осуществляться прогретой солнцем водой. Ветронасосная установка представлена на рис.29.

Установка состоит из двух основных частей – ветродвигателя и насоса. Ветродвигатель – многолопастной, тихоходный, представляет собой головку с 12-лопастным ветроколесом. При изменении направления ветра он автоматически самоустанавливается с подветренной стороны опоры благодаря повороту головки. Насос является самовсасывающим, с горизонтальной проточной резиновой диафрагмой. Производительность установки увеличивается при увеличении скорости ветра и при уменьшении высоты подъема воды. Установка начинает работать при скорости ветра 2,5м/с и при скорости в 6 м/с производительность ее доходит до 700л/ч при высоте всасывания 8м.

В основном малая ветроустановка состоит из следующих основных компонентов:

– ротор, лопасти, ветротурбина,

– мачта с растяжками

– генератор,

– аккумуляторные батареи,

– контроллер,

– инвертор (= 24 В -> ~ 220 В 50Гц) ,

– анемометр и датчик направления ветра,

– АВР – автоматический переключатель источника питания.

Лопасти ветротурбины приводят в движение вал генератора благодаря кинетической энергии ветра.

Мачта используется для подъема ветротурбины.

Генератор необходим для выработки переменного тока. Сила тока и напряжение генератора зависит от скорости и стабильности ветра. В зависимости от условий эксплуатации и специфических требований в составе ветроэнергетической установки (ветрогенератора) используются следующие типы генераторов.






Рис.29 Ветронасосная установка



Генератор с аксиальным зазором - синхронный тихоходный генератор с постоянными магнитами. Выходное напряжение является переменным по частоте и амплитуде, необходима сложная электронная регулировка. Генератор может использоваться в автономных системах. Синхронизация с сетью требует дополнительного оборудования.

Генератор с комбинированным возбуждением - низкооборотный генератор с электромагнитами. Дополнительная, регулирующая обмотка стабилизирует выходное напряжение генератора на выходе. Выход – постоянное напряжение (24В, 48В, 96В и т.д.). Генератор может использоваться в автономных системах. Синхронизация с сетью требует дополнительного оборудования.

Генератор асинхронный синхронизированный. Обмен активной и реактивной энергией с автоматической (согласно физической природе) стабилизацией частоты и амплитуды выходного напряжения делает такой генератор привлекательным для использования в составе сети. В случае сетевого варианта выход – переменное, согласованное по фазе, частоте и амплитуде напряжение. В случае автономного варианта для получения постоянного напряжения требуется дополнительный регулятор. В таблице 3 представлены технические характеристики низкооборотных генераторов с возбуждением от постоянных магнитов.

Контроллер необходим для управления работой ветроустановкой (поворот лопастей, заряд аккумуляторов, защитные функции и др.)

Инвертор необходим для преобразования переменного тока, вырабатываемого генератором в постоянный для заряда аккумуляторных батарей. Инверторы бывают четырёх типов:

1.Модифицированная синусоида – преобразовывает ток в переменный с напряжением 220В с модифицированной синусоидой (ещё одно название: квадратная синусоида). Пригоден только для оборудования, которое не чувствительно к качеству напряжения: освещение, обогрев, заряд устройств.

2.Чистая синусоида – преобразовывает ток в переменный с напряжением 220В с чистой синусоидой. Пригоден для любого типа электроприборов: электродвигатели, медицинское оборудование и др.

3.Трехфазный – преобразовывает ток в трехфазный с напряжением 380В. Можно использовать для трехфазного оборудования.

4. Сетевой – в отличие от предыдущих типов позволяет системе работать без аккумуляторных батарей, но его можно использовать только для вывода электроэнергии в местную электросеть. Их стоимость, обычно, в несколько раз превышает стоимость несетевых инверторов.

Таблица 3 Технические характеристики низкооборотных генераторов с возбуждением от постоянных магнитов




В зависимости от моделей они различаются по входному постоянному напряжению (12V, 24V, 48V) и по мощности подключаемой к ним нагрузки (от 500 Вт до 5 кВт и более). Как правило, все инверторы обеспечивают защиту от перегрузки, короткого замыкания, перезаряда и полного разряда аккумуляторов. Большинство инверторов обладает функцией автоматического переключения питания бытовых приборов на аккумулятор и обратно при "пропадании" сети 220V 50Гц и её "появлении", а также способностью автоматической зарядки аккумуляторов после использования их в качестве источника электроэнергии. Инвертор питает приборы напряжением 220 Вольт 50 Гц и контролирует состояние батареи. В случае нехватки вырабатываемой ветряком и накопленной на аккумуляторах энергии, и падении напряжения на батарее до 22 Вольт, автоматически запускается дизель-генератор. Инвертор переключает потребители на питание от дизеля и одновременно заряжает аккумуляторную батарею. При достижении напряжения на клеммах аккумуляторов 28 (или 30 – в зависимости от емкости батареи) Вольт, дизель-генератор автоматически выключается, и питание приборов инвертор переключает на аккумуляторы.

Аккумуляторные батареи необходимы для накапления электроэнергии, которая будет использована в безветренные часы. Также они выравнивают и стабилизируют выходящее напряжение из генератора. Благодаря им получается стабильное напряжение без перебоев даже при порывистом ветре. Определяясь с мощностью приобретаемой ветроэлектрической установки, надо иметь ввиду, что все ветроустановки работают на заряд аккумуляторной батареи. Только так можно обеспечить непрерывное электропитание потребителей определённой мощности требуемым напряжением, при помощи подключаемого к аккумуляторной батарее инвертора. Однако надо учитывать, что максимально возможный зарядный ток на аккумуляторы составляет 10% от их ёмкости. Это значит, что чем мощнее ветрогенератор, тем больше должна быть ёмкость установленной аккумуляторной батареи и, следовательно, большее количество аккумуляторов. Так при мощности генератора в 5 кВт и напряжении на аккумуляторной батарее 48 Вольт, максимально возможный ток заряда батареи составляет около 100 Ампер. Следовательно для батареи, собранной из отдельных 12 вольтовых аккумуляторов ёмкостью по 200 А/час. каждый, необходимо 20 аккумуляторов, чтобы использовать мощность генератора в полном объёме. То есть каждые 4 аккумулятора, соединённые последовательно, составляют одну линейку напряжением 48 Вольт и ёмкостью 200 А/час. Максимально возможный ток для такой линейки составляет 20 Ампер. Таких линеек необходимо 5, соединённых параллельно. Если же аккумуляторов будет меньше (общая ёмкость батареи меньше 1000 А/час.) – то либо придётся ограничивать ток заряда , либо аккумуляторная батарея будет "кипеть" при сильном ветре, и быстро выйдет из строя. Конечно, чем мощнее генератор, тем больше ток заряда при малых ветрах, и быстрее восстановление аккумуляторов до полной ёмкости. Но соотношение цены и мощности ветроустановки, возможность размещения огромной по количеству и дорогой по цене аккумуляторной батареи заставляют подумать о мощности приобретаемого ветрогенератора.





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=50147162) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



В книге "Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок" рассмотрены основные элементы ветроустановок для малой энергетики и промышленного применения. Предложены оптимальные схемы подключения, монтажа и сервиса оборудования ветроустановок. Книга может представлять интерес для школьников, студентов и специалистов, занимающихся монтажом и сервисом ветроустановок.

Как скачать книгу - "Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок" в fb2, ePub, txt и других форматах?

  1. Нажмите на кнопку "полная версия" справа от обложки книги на версии сайта для ПК или под обложкой на мобюильной версии сайта
    Полная версия книги
  2. Купите книгу на литресе по кнопке со скриншота
    Пример кнопки для покупки книги
    Если книга "Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок" доступна в бесплатно то будет вот такая кнопка
    Пример кнопки, если книга бесплатная
  3. Выполните вход в личный кабинет на сайте ЛитРес с вашим логином и паролем.
  4. В правом верхнем углу сайта нажмите «Мои книги» и перейдите в подраздел «Мои».
  5. Нажмите на обложку книги -"Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок", чтобы скачать книгу для телефона или на ПК.
    Аудиокнига - «Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок»
  6. В разделе «Скачать в виде файла» нажмите на нужный вам формат файла:

    Для чтения на телефоне подойдут следующие форматы (при клике на формат вы можете сразу скачать бесплатно фрагмент книги "Монтаж и сервис оборудования по использованию возобновляемых источников энергии. Том 3. Монтаж и сервис ветроустановок" для ознакомления):

    • FB2 - Для телефонов, планшетов на Android, электронных книг (кроме Kindle) и других программ
    • EPUB - подходит для устройств на ios (iPhone, iPad, Mac) и большинства приложений для чтения

    Для чтения на компьютере подходят форматы:

    • TXT - можно открыть на любом компьютере в текстовом редакторе
    • RTF - также можно открыть на любом ПК
    • A4 PDF - открывается в программе Adobe Reader

    Другие форматы:

    • MOBI - подходит для электронных книг Kindle и Android-приложений
    • IOS.EPUB - идеально подойдет для iPhone и iPad
    • A6 PDF - оптимизирован и подойдет для смартфонов
    • FB3 - более развитый формат FB2

  7. Сохраните файл на свой компьютер или телефоне.

Видео по теме - Водород и ВИЭ. Электромобили и Перспективы в Энергетике. Борис Марцинкевич | Геоэнергетика Инфо

Книги автора

Последние отзывы
Оставьте отзыв к любой книге и его увидят десятки тысяч людей!
  • константин александрович обрезанов:
    3★
    21.08.2023
  • константин александрович обрезанов:
    3.1★
    11.08.2023
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *