Книга - Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров

a
A

Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров
Станислав Львович Горобченко


Курс "Трубопроводная арматура. Краткий курс для менеджеров" дает основные положения по трубопроводной арматуре, представленные в сжатой форме. В курсе рассматриваются основные сведения по терминологии, базовым конструкциям, видам испытаний и стандартам арматуры. В разделе Трубопроводная арматура кратко рассматриваются основные типы арматуры с возвратно-поступательным движением и поступательным движением штока, и виды арматуры по применению от регулирующей и запорной и до конденсатоотводчиков. Представлены основные положения по приводам арматуры и приборам управления, особенностям эксплуатации арматуры, ее монтажу и техническому обслуживанию, а также особенностям ее закупки, история и перспективы ее развития в будущем. Курс предназначен для ознакомления с основными положениями об арматуре и может быть использован для обучения персонала, и полезен для специалистов и руководителей по маркетингу и сбыту трубопроводной арматуры и приводов.





Станислав Горобченко

Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров





Введение и задачи курса


В курсе "Трубопроводная арматура. Краткий курс" мы представляем основные сведения по трубопроводной арматуре. В курс входит обзор запорной, обратной, предохранительной, регулирующей арматуры и приводов, а также приборов управления трубопроводной арматурой, применяемой в большинстве отраслей промышленности.



Вы узнаете о базовых конструкциях, выборе, испытаниях, монтаже и обслуживании трубопроводной арматуры и применяемых стандартах.



Большое внимание уделено организационным проблемам применения арматуры и повышению ее эффективности. Для этого мы рассмотрим программы повышения эффективности применения арматуры на предприятиях-потребителях, основные проблемы при закупках арматуры, а также пути развития арматуры в будущем.



Материалы помогут Вам при контактах с инженерно-техническими работниками, специалистами, эксплуатирующими арматуру, занятыми проектированием, строительством и ремонтом трубопроводных систем.



При изложении материала применяется способ логического деления (в отличие от традиционного абзацного), что позволяет лучше структурировать и осваивать материал по смысловым единицам.




1. Трубопроводная арматура. Основные положения





1.1. Обзор основных тем


Тема 1. Теоретические сведения

Классификация трубопроводной арматуры. Типы арматуры: задвижки, клапаны, краны, дисковые затворы. Классификация арматуры по функциональному назначению: запорная, регулирующая, предохранительная, обратная и другие виды арматуры.



Принцип работы и базовые конструкции арматуры. Схема работы арматуры возвратно-поступательного и вращательного действия. Гидравлические процессы при работе арматуры. Схема работы регулирующей арматуры. Работа обратной арматуры. Работа предохранительной арматуры. Влияние среды на выбор арматуры. Прочие важные характеристики арматуры.



Расчеты арматуры. Для чего нужен расчет арматуры? Основы расчета. Упрощенный расчет пропускной способности арматуры.



Физические величины и единицы измерения, применяемые в расчетах арматуры. Основные физические величины. Основные понятия и определения. Единицы измерений физических величин.



Среды. Типы сред. Сравнение характеристик разных сред.



Тема 2. Виды арматуры

Общие характеристики. Термины и определения. Условия работы и выбор арматуры. Монтажные параметры арматуры. Гидравлические испытания и классы герметичности арматуры. Гидравлические характеристики и классы точности регулирующей арматуры. Сертификация арматуры на различные виды испытаний. Критерии и методы проверки.



Типовые конструкции арматуры. Арматура с линейным (возвратно-поступательным движением штока). Арматура с вращательным движением штока.



Запорная арматура. Задвижки. Клапаны запорные. Электромагнитные запорные клапаны. Распределительные электромагнитные клапаны. Отсечные клапаны. Отключающие клапаны. Обратные клапаны.



Регулирующая арматура. Регулирующие клапаны. Регуляторы давления. Регуляторы уровня.



Другие виды арматуры. Предохранительная арматура. Предохранительные клапаны. Перепускные клапаны. Импульсные предохранительные устройства.



Арматура с вращательным движением штока. Шаровые краны. Дисковые затворы. Сегментные шаровые краны (со сферическим сегментным затвором). Клапаны с эксцентриковым затвором. Обратные затворы. Гермоклапаны.



Специальная арматура. Мембранные и импульсные устройства. Гидрозатворы. Дыхательные клапаны. Конденсатоотводчики.



Приводы арматуры. Ручные приводы. Электромеханические приводы. Электромагнитные приводы. Поршневые приводы. Мембранные приводы. Электрические исполнительные механизмы. Пневматические приводы (поршневые, реечно-зубчатые, пневматические струйные). Гидравлические (пневмогидравлические, электрогидравлические приводы).



Конструкционные материалы. Чугуны. Стали. Легированные стали и сплавы. Неметаллические и керамические материалы.



Стандарты в арматуре. Применяемые стандарты по арматуре и приводам. Ключ сталей.



Тема 3. Эксплуатация арматуры

Монтаж арматуры. Обслуживание арматуры. Программы повышения эффективности применения арматуры.



Тема 4. Организационные вопросы

Особенности закупки арматуры предприятиями – потребителями на современном этапе.



Тема 5. Перспективы развития арматуры

Вехи развития арматуры. Прогнозирование развития арматуры на основе законов развития технических систем.




1.2. Терминология


Арматура промышленная трубопроводная – это устройства, устанавливаемые на трубопроводах и ёмкостях и предназначенные для управления (отключения, распределения, регулирования, впуска или выпуска, смешивания, разделения фаз) потоками рабочих сред путём изменения площади проходного сечения.



Наиболее распространены пять основных видов арматуры, которые различаются в зависимости от перемещения запирающего или регулирующего элемента относительно направления движения потока среды. Основные виды арматуры представлены на рис 1.






Рис. 1.1. Базовые конструкции арматуры



1) Задвижки – арматура, в которой запирающий элемент перемещается по прямой линии перпендикулярно направлению движения рабочей среды потока.






Рис. 1.2. Общий вид задвижки



2) Запорные и регулирующие клапаны – арматура, в которой запирающие или регулирующие элементы перемещаются по прямой линии параллельно направлению оси потока, проходящего через проходное сечение.






Рис. 1.3. Общий вид запорного клапана



3) Пробковые краны, включая шаровые краны – арматура, в которой запирающий или регулирующий элемент, имеющий форму тела вращения или его части, поворачивается вокруг собственной оси, произвольно расположенной по отношению к направлению потока рабочей среды. Повороту запирающего или регулирующего элемента может предшествовать его возвратно-поступательное движение.






Рис. 1.4. Шаровой кран



4) Затворы дисковые поворотные – арматура, в которой запирающий или регулирующий элемент поворачивается вокруг оси, не являющейся его собственной осью и расположенной под прямым углом к направлению потока рабочей среды, проходящей через проходное сечение.






Рис. 1.5. Поворотный дисковый затвор



5) Мембранная (диафрагмовая) арматура – арматура, в которой запирающий или регулирующий элемент выполнен в виде гибкой мембраны или эластичного патрубка (в последнем случае – в шланговых задвижках), которые обеспечивают при деформации гибкой диафрагмы или патрубка герметизацию относительно внешней среды и уплотнение в затворе.










а)










б)

Рис. 1.6. Мембранная арматура

а) шланговая задвижка

б) мембранный клапан



Арматура, используемая в промышленности, может быть разделена на арматуру с линейным перемещением запирающего или регулирующего элемента, как правило, многооборотную и с вращательным (на четверть оборота) перемещением, как показано в табл. 1.1.



Табл. 1. 1. Арматура с линейным и вращательным движением штока








Главная особенность арматуры с линейным перемещением – возможность достижения высокой герметичности в затворе в пределах прочности применяемых материалов и конструкций путём приложения достаточного усилия на шпинделе.



Арматура с вращательным перемещением, с другой стороны, является обычно простой, легкой, позволяющей включать её в автоматизированные системы и выполнять в многоходовом исполнении. Арматура, в которой запирающий или регулирующий элемент вращается относительно оси на четверть оборота, быстро переводится из положения «открыто» в положение «закрыто» и наоборот, а расположение рукоятки показывает степень перекрытия прохода.



Имеется также много уникальных конструкций, предназначенных для специфических применений или выполненных в блочном исполнении, использующем особенности различных видов арматуры для улучшения эксплуатационных характеристик.



Различные типы арматуры применяются для выполнения следующих функций:



1) Запорная арматура предназначена для использования в открытом или закрытом положении.



2) Регулирующая арматура предназначена для использования во всех позициях между полностью открытым и полностью закрытым положениями.



3) Автоматически действующая регулирующая арматура используется для изменения параметров среды в системах управления производственными процессами путём изменения её расхода. Она состоит из клапана, связанного с приводом (исполнительным механизмом), который изменяет положение регулирующего элемента по сигналу системы управления.



4) Предохранительная арматура предназначена для автоматической защиты оборудования и трубопроводов от недопустимого повышения давления путём сброса среды из ёмкостей с последующим закрытием для предотвращения дальнейшего выпуска среды после того, как нормальное давление восстановлено.






Рис. 1.7. Предохранительный клапан



5) Обратная арматура предназначена для автоматического предотвращения обратного потока рабочей среды. Она автоматически открывается при движении потока в заданном направлении и закрывается при изменении направления его движения в обратном направлении.






Рис. 1.8. Обратный клапан



6) Распределительно/смесительная арматура предназначена для распределения потока по определённым направлениям или для смешивания потоков. Имеет более двух присоединительных патрубков.



7) Арматура многофункциональная – арматура, которая может использоваться для выполнения нескольких функций. Как правило, проектируется в блочном исполнении.



8) Конденсатоотводчики – Фазоразделительная арматура, предназначенная для отвода конденсата водяного пара.




1.3. Обозначение арматуры и приводов


Текстовые обозначения. Современное состояние.

Действующие ранее ГОСТы предусматривали условные обозначения арматуры, состоящие из наименования, номера конструктивного типа (римские цифры I, II и т. д.) и исполнения (заглавные буквы А. Б, В и пр.), условного прохода в мм, условного давления в кгс/см


и номера ГОСТ. Например, клапан запорный II-А-50–40 ГОСТ 9659–66. Эти стандартные обозначения часто используются проектировщиками. Однако в каталогах на арматуру и приводы, в номенклатуре предприятий, на рынке арматуры применяют не стандартные, а отраслевые условные обозначения. Это – известные всем таблицы/фигуры.



Эта система обозначений была введена в практику ещё в XIX веке первыми российскими каталогами, издаваемыми родоначальником отечественной арматуры – Санкт-Петербургской арматуростроительной компанией «Лангензипен». В её каталоге было написано: «Для исключения возможных ошибок, а также для ускорения удовлетворения заказчиков ответом по запросам и заказам, во всех запросах и заказах надлежит обязательно указывать таблицы, фигуры и размеры изделий, руководствуясь настоящим каталогом». В каталоге давалась пронумерованная таблица с диаметрами условных проходов, размерами и ценами и печатался чертёж изделия, обозначенный номером, например, фиг. 30. Таблицы/фигуры дополнялась при издании всех арматурных каталогов. В дальнейшем, впервые при издании каталога Главгидромаша Министерства машиностроения и приборостроения СССР, начиная с 1933 года, количество таблиц увеличилось, и каждая из них содержала информацию об особенностях арматуры. Часть обозначений сохранилась до сих пор, а другие изменялись, отражая развитие техники и появление новых материалов.



Следует отметить, что нормативных документов, регламентирующих содержание или требования к помещаемым в таблицах сведениям, никогда не существовало. Даже в период появления вычислительных центров Госплана и Госснаба СССР, когда первые ЭВМ не могли распознавать буквенные индексы, требования перейти на цифровые обозначения встретили суровый отпор со стороны планирующих и распределяющих государственных органов. Центральному конструкторскому бюро арматуростроения ЛНПОА им. Лепсе было поручено выдавать номера таблиц/фигур каждому исполнению новой продукции, а изготовителям предписано получать эти обозначения. До начала 90-х годов прошлого столетия таблица/фигура совершенно определённо соответствовала производимой продукции.



После исчезновения государственной системы СССР появилось много новых производителей, начавших самостоятельно присваивать номера таблиц/фигур любой арматурной продукции, причём эти обозначения уже не соответствовали свойствам конкретной арматуры, и зачастую использовались для обозначения продукции, пользующейся спросом, без соблюдения какой-либо системы. Например, если раньше т/ф 30с41нж принадлежала только задвижкам РN 1,6 МПа Львовского арматурного и Бежицкого сталелитейного заводов, в настоящее время под этим наименованием изготавливаются задвижки на разные давления многими предприятиями, причём с первоначальным проектом не имеющие ничего общего. Таким образом, обозначения, используемые сегодня, не отражают конкретные технические данные предлагаемой на рынке продукции.



Таблицы/фигуры в сочетании с диаметром условного прохода и условным давлением содержали довольно большой объём информации:

– конструктивный тип;

– материал корпусных деталей,

– материал деталей уплотнения;

– материал внутреннего покрытия корпуса;

– две цифры обозначали порядковый номер по книге регистрации ЦКБА;

– если цифра трёхзначная, первая цифра определяла тип привода.



Условные обозначения вида арматуры приведены в табл. 1.2



Табл. 1.2. Условные обозначения вида арматуры








В каталоге Главгидромаша присутствовали таблицы/фигуры, исключённые из более поздних изданий. Например, для обозначения арматуры использовались кроме названных т/ф, дополнительно т/ф 20с2нж, 20с4нж (клапаны перепускные), 26Бббк, 26ч12нж, 26с20нж (регуляторы уровня), 46ч5бк (водоотделитель) 46ч11бк (маслоотделитель), 68с100нж (устройство для манометров), электроприводы имели условное обозначение 87.



Табл. 1.3. Условные обозначения материала корпуса арматуры








Табл. 1.4. Условные обозначения типа привода








Табл. 1.5. Условные обозначения материала уплотнительных поверхностей








Табл. 1.6. Условные обозначения внутреннего покрытия корпуса








Иногда после букв, определяющих материал уплотнения, ставят цифры, обозначающие вариант конструктивного исполнения. Например, 15с922нж1 означает: 15 – клапан запорный, с – стальной, 9 – с электроприводом, 22 – порядковый номер по книге регистрации, нж – материал уплотнения, 1 – конструктивное исполнение.



Несмотря на то, что и терминология и состав арматуры изменились, отсутствуют некоторые важные виды арматуры (например, шаровые краны), таблицы/фигуры пережили не одно поколение арматуростроителей и её потребителей. По-видимому, эта система для арматуры, пользующейся спросом, т. е. частично, просуществует ещё долгое время, поскольку пока не предложено и не принято обязательных для всей отрасли других систем обозначения арматурной продукции. Теперь можно определить легитимность обозначения предприятием продукции таблицей/фигурой. Для этого достаточно запросить письмо ЦКБА (ЛНПО «Знамя Труда») или завода, зарегистрировавшего обозначение своего изделия, о присвоении номера таблицы/фигуры. Если такого документа нет, значит, предприятие самостоятельно взяло номер таблицы/фигуры, как правило, на арматуру, пользующуюся спросом. В качестве примера можно привести такое новое обозначение: «Кран шаровой 11с67п (КЗШс41нж)». Специалисту трудно понять, какая система обозначения принята предприятием. Может быть, используется часть обозначения популярной задвижки 30с41нж или завод разработал свою собственную систему.



В Минхиммаше существовало ещё несколько систем обозначения чертежей и разработчиков. Так, по буквам, с которых начиналось обозначение номера чертежа, можно определить предприятие или отдел ЦКБА, разработавшего конструкцию изделия. Одна или две буквы в номере чертежа присвоены следующим предприятиям:

МА – Алексинский арматурный завод «Тяжпромарматура»;

БА – Благовещенский арматурный завод;

ВД – Верхнеднепровский чугунолитейный завод;

ГЛ – Георгиевский арматурный завод им. Ленина;

КП – Гусь-Хрустальный арматурный завод "Красный Профинтерн" («Армагус»;

ДР – Днепропетровский ремонтный завод;

ДА – Дунаевецкий арматурный завод;

ДЗ – Душанбинский арматурный завод;

ЕЗ – Елабужский арматурный завод;

ЕА – Ереванский арматурный завод;

ЗА – Запорожский арматурный завод;

АЗ – Закарпатский арматурный завод;

ИА – Ивано-Франковский арматурный завод;

АК – Конотопский арматурный завод;

КТ – Котельниковский арматурный завод;

КА – Кролевецкий арматурный завод;

КЗ – Курганский арматурный завод «Икар»;

ЛА – Прикарпатпромарматура (Львовский арматурный завод);

ЛЗ – Льговский арматурный завод;

НА – Наманганский машиностроительный завод;

НГ – СКТБ «Спецпромарматура», (Великий Новгород) «Сплав»;

МЗ – Миргородский арматурный завод;

РХ – Ригахиммаш ("РИНАР");

СМ – Салаватский машиностроительный завод;

СЗ – Семеновский арматурный завод;

АС – Семипалатинский арматурный завод;

СА – Славгородский арматурный завод;

ТЭ – Тулаэлектропривод;

УЛ – Уральский арматурный завод;

УК – Усть-Каменогорский арматурный завод;

СК – Киевпромарматура ("АРМА-КЛАПАН");

ПТ – «Пензтяжпромарматура»;

МФ – Московское ЦКБА;

ПФ – Пензенское конструкторско-технологическое бюро;

УФ – Киевское ЦКБА;

Л – отдел задвижек ЦКБА;

И – отдел предохранительных и регулирующих клапанов ЦКБА;

М – отдел кранов ЦКБА;

П – отдел неметаллической арматуры и арматуры с покрытием ЦКБА;

К – отдел затворов дисковых поворотных и обратных ЦКБА;

С – отдел клапанов запорных и клапанов обратных подъемных среднего давления ЦКБА;

У – отдел клапанов запорных и клапанов обратных подъемных низкого давления ЦКБА;

Т – отдел электромагнитной арматуры ЦКБА;

Б – отдел приводных устройств ЦКБА.

Две первые цифры говорят о виде и исполнении изделия (ОСТ 2607 2046):



Задвижки

11 – задвижка с цельным или упругим клином с выдвижным шпинделем;

12 – задвижка с цельным или упругим клином с не выдвижным шпинделем;

13 – задвижка двухдисковая с выдвижным и не выдвижным шпинделем;

14 – задвижка самоуплотняющаяся с выдвижным шпинделем;

15 – задвижка самоуплотняющаяся с не выдвижным шпинделем;

16 – задвижка распорная с выдвижным шпинделем;

17 – задвижка распорная с не выдвижным шпинделем;

18 – задвижка с винтовым или рычажным прижимом с выдвижным шпинделем;

19 —задвижка шиберная;



Клапаны

21 – клапан запорный сальниковый проходной с резьбой шпинделя вне среды;

22 – клапан запорный сальниковый проходной с резьбой шпинделя в среде;

23 – клапан запорный сальниковый угловой с резьбой шпинделя вне среды;

24 – клапан запорный сальниковый угловой с резьбой шпинделя в среде;

25 – клапан запорный сальниковый трёхходовой с резьбой шпинделя в среде и вне среды;

26 – клапан запорный бессальниковый проходной, сильфонный, мембранный и др.

27 – клапан регулирующий и дроссельный проходной;

28 – клапан регулирующий и дроссельный угловой;

29 – клапан запорный бессальниковый угловой сильфонный и трёхходовой, мембранный, баллонный;



Краны

31 – кран натяжной не смазываемый и со смазкой проходной;

32 – кран натяжной не смазываемый и со смазкой трёхходовой;

33 – кран сальниковый не смазываемый проходной;

34 – кран сальниковый не смазываемый трёхходовой;

35 – кран сальниковый смазываемый проходной;

36 – кран сальниковый смазываемый трёхходовой;

37 – кран пробно-спускной;

38 – кран для указателей уровня;

39 – кран шаровый, четырёхходовой и др.



Клапаны и затворы обратные

41 – клапан обратный подъёмный проходной;

42 – клапан обратный подъёмный угловой;

43 – клапан обратный подъёмный вертикальный;

44 – затвор обратный поворотный однодисковый;

45 – затвор обратный поворотный многодисковый;

46 – клапан обратный приёмный с сеткой;

47 – затвор обратный поворотный грейферный.



Клапаны предохранительные и перепускные, предохранительные устройства

51 – клапан предохранительный малого подъёма рычажный одинарный;

52 – клапан предохранительный малого подъёма рычажный двойной;

53 – клапан предохранительный малого подъёма пружинный;

54 – предохранительные устройства;

55 – клапан предохранительный высокого и полного подъёма пружинный;

56 – клапан предохранительный высокого и полного подъёма импульсный (для главного);

57 – главный предохранительный клапан со встроенным импульсным устройством;

58 – вакуумный (дыхательный) клапан, разрывная мембрана;

59 – главный предохранительный и перепускной клапан.



Клапаны редукционные, регулирующие и регуляторы

61 – клапаны редукционные и регуляторы с грузовой нагрузкой привода;

62 – клапаны редукционные и регуляторы с нагрузкой привода давлением;

63 – клапаны редукционные и регуляторы с пружинной нагрузкой привода;

64 – клапаны редукционные и регуляторы с другими видами нагрузки привода;

65 – клапан регулирующий с регулирующим элементом, совершающим возвратно-поступательное движение, плунжерный (золотниковый), шиберный, мембранный, шланговый, одно и более седельный с пневматическим (гидравлическим) исполнительным механизмом, в том числе под дистанционное управление;

66 – клапан регулирующий с регулирующим элементом, совершающим вращательное движение, дисковый, сферический (шаровый), шиберный, цилиндрический с пневматическим (гидравлическим) исполнительным механизмом, в том числе под дистанционное управление;

67 – клапан регулирующий с регулирующим элементом иной формы, совершающим другие виды движения, с пневматическим (гидравлическим) исполнительным механизмом, в том числе под дистанционное управление;

68 – клапан регулирующий с регулирующим элементом, совершающим возвратно-поступательное движение, плунжерный (золотниковый), шиберный, мембранный, шланговый, одно и более седельный с электрическим исполнительным механизмом, в том числе под дистанционное управление;

69 – клапан регулирующий с регулирующим элементом иной формы, совершающим вращательное движение, дисковый, сферический (шаровый), шиберный, цилиндрический, с электрическим исполнительным механизмом, в том числе под дистанционное управление;

60 – клапан регулирующий с регулирующим элементом иной формы, совершающим другие виды движения, с электрическим исполнительным механизмом, в том числе под дистанционное управление.



Конденсатоотводчики

71 – Конденсатоотводчик лабиринтный;

72 – конденсатоотводчик поплавковый;

73 – конденсатоотводчик термостатический;

76 – конденсатоотводчик термодинамический.



Указатели уровня

81 – указатели уровня с круглым или плоским стеклом с запорным устройством кранового типа;

82 – указатели уровня с круглым или плоским стеклом с запорным устройством клапанного типа с шаровым аварийным затвором;

83 – указатели уровня с круглым или плоским стеклом с запорным устройством клапанного типа без шарового аварийного затвора;

88 – рамки для указателей уровня.



Разная арматура

91 – затворы шиберные, кольцевые и другие;

92 – инжекторы;

93 – вантузы, водоотделители, фильтры;

94 – маслоотделители;

95 – затворы конусные;

96 – клапаны запорные, аварийные, отсечные, дросселирующие, невозвратно-запорные, редукционные устройства;

97 – элеваторы и эжекторы;

98 – нагреватели пароструйные, задвижки шланговые регулирующие; затворы поворотные, заслонки поворотные регулирующие;

99 – затворы поворотные, заслонки регулирующие;

90 – блоки арматурные, (разные виды арматуры).



Вспомогательные устройства

01 – вентиляционные заслонки;

02 – лубрикаторы;

03 – компенсаторы;

04 – клапаны дренажные;

05 – устройства для управления арматурой;

06 – соединения ниппельные и другие;

07 – струйные и другие реле;

08 – прочие вспомогательные устройства;

09 – механические, электрические и другие виды приводов.

В свою очередь, приводы обозначаются тремя цифрами:

092 – электрогидропривод;

093 – механический с червячной передачей;

094 – механический с цилиндрической передачей;

095 – механический с конической передачей;

096 – пневматический (мембранный, поршневой и др.);

097 – гидравлический поршневой;

098 – электромагнитный;

099 – электрический.



Вся арматурная продукция в период планового хозяйства была закодирована ЦКБА (ЛПОА «Знамя Труда») десятизначными кодами 37 класса Общесоюзного классификатора продукции. Эти коды сохранились с принятием Общероссийского классификатора продукции ОКП 005 –93. Однако нам неизвестны случаи использования этих кодов. По-видимому, они никогда не будут востребованы и в дальнейшем, тем более что по кодам ОКП невозможно определить тип или вид арматуры и приводов, так как ОКП составлялся без использования какой-либо системы.



Кодирование конструкторской документации регламентировано ГОСТ 2.201–80 "ЕСКД Обозначение изделий и конструкторских документов". Например: КПЛВ.492144.052. «КПЛВ» – код по Отраслевому кодификатору предприятий и организаций-разработчиков конструкторской документации, который присваивается федеральными или отраслевыми головными организациями по стандартизации, например, ВНИИКИ Госстандарта России по запросу предприятий. Цифры 492144 выбираются по Классификатору ЕСКД, класс 49 "Арматура трубопроводная" и обозначают "Клапан сильфонный DN до 50 мм с присоединением к трубопроводу на сварке». Цифры 052 – порядковый регистрационный номер.



Некоторые страны Европы используют коды и классификацию Европейского комитета промышленной арматуры, объединяющего 27 национальных ассоциаций (Приложение 3).






Рис. 1.9. Условные графические обозначения арматуры общего назначения по ГОСТ 2.785–70



При осуществлении внешнеэкономической деятельности предприятия пользуются кодами, приведёнными в сборнике Государственного таможенного комитета России ТН ВЭД СНГ (РГ 111). Арматура находится в группе 8481.



Табл. 1.7. Номенклатура арматуры по ТН ВЭД
















1.4. Базовые конструкции арматуры


Рабочая среда должна полностью сохраняться в трубопроводе так, чтобы не подвергать опасности персонал и окружающую среду и не допускать собственного загрязнения. Трубопроводы имеют много потенциальных мест утечек соединения труб, сварные швы, присоединения оборудования и, наконец, арматуры. Арматура может причинять самую большую головную боль на объекте, если, например, неправильно выбрана, плохо спроектирована, изготовлена с низким качеством или, не обладая огнестойкостью, установлена в пожароопасную окружающую среду.



Правильно подобранная арматура должна работать, по крайней мере, в течение жизни предприятия с минимальными затратами на обслуживание. Поэтому, понимание основных технических требований к конструкциям арматуры должно стать важным фактором в обучении любого инженера предприятия и инженера по обслуживанию трубопроводов.



Выбор материалов

Существует широкий диапазон материалов, способных обеспечить самые серьезные условия эксплуатации арматуры. Следует обоснованно выбирать материалы для каждой детали: корпуса, крышки, узла уплотнения, шпинделя, ходовой гайки, мест соединений и так далее, чтобы достигнуть оптимального сочетания и удовлетворить условия эксплуатации в течение всего срока службы.



Материалами, наиболее часто применяемыми в конструкциях арматуры, являются чугун, углеродистая, легированная и нержавеющая сталь, бронза, другие медесодержащие и никелевые сплавы, реже используются титан и алюминий. Чугунная и бронзовая арматура эксплуатируется при сравнительно невысоких температурах –200…260°С. Углеродистые и нержавеющие стали применяются для более низких и более высоких температур. Для сверхнизких (криогенных) температур ниже -196°С употребляются высоколегированные нержавеющие стали и сплавы.



Для высококоррозионных рабочих сред, или сред, вступающих в химическую реакцию с металлическими поверхностями, и, чтобы предотвратить загрязнение среды, арматура должна быть покрыта защитными материалами (эбонитом, пластмассами, стеклом или керамикой).



Цельнопластмассовая арматура все более и более выступает как альтернатива нержавеющей стали или сплавам. Пластмассовая арматура изготавливается из разнообразных материалов и показала удовлетворительные результаты в применении для систем с агрессивными химическими соединениями типа слабых кислот и для чрезвычайно коррозионных рабочих сред. Некоторые из используемых материалов – непластифицированный поливинилхлорид (UPVC), акрилонитрил бутадиенстирен (ABS), полипропилен (PP) и полиэтилен (PE). Пластмассовая арматура может использоваться для низкого давления, а для более высоких давлений на пластмассовых трубопроводах используются стальные клапаны.



Все больше начинает использоваться и композитная арматура, например из армированного стеклопластика. Этот материал оказался особенно устойчив в агрессивных средах, имеет хорошие прочностные и пластические свойства. Это привело к тому, что он становится все более востребованным на химических производствах, участках химводоподготовки ТЭС и др., заменяя собой не только арматуру из высоколегированных металлов, но и арматуру из пластмасс.



Прочность арматуры

Корпус арматуры – главная деталь, работающая под давлением и служащая основным элементом для всех других деталей. Он должен быть достаточно мощным для противостояния давлению и температуре среды изнутри и нагрузкам, возникающим от монтажа на трубопроводах и привода снаружи. Вид арматуры, рабочее давление, метод изготовления, материал и цена – всё должно рассматриваться, и должно быть учтено разнообразие потенциальных мест утечек через корпус, разъём корпуса с крышкой, уплотнительные поверхности, уплотнение шпинделя и присоединение к трубопроводу.



При прочностных и силовых расчётах следует учитывать в совокупности нагрузки от рабочего давления, монтажных усилий и динамических воздействий, возникающих при контакте перемещающегося штока с корпусными деталями.



Полнопроходная или зауженная арматура

Некоторые виды арматуры, в особенности задвижки и шаровые краны, могут быть разработаны с полным или зауженным проходом. Полный проход означает равенство диаметров проходного сечения арматуры и трубопровода и применяется в арматуре, используемой в системах с незначительными перепадами рабочего давления, а также там, где требуется обеспечить беспрепятственный проход для чистящих трубопроводы ершей.



Зауженный проход с диаметром прохода, обычно уменьшаемым до следующего меньшего стандартного условного диаметра, используется, чтобы сэкономить вес, материал и, следовательно, стоимость. Использование зауженного прохода, однако, увеличивает гидравлическое сопротивление и скорость пропуска среды. Это может привести к чрезмерному кавитационному износу и шуму в системе в случаях, когда давление на входе близко к давлению парообразования протекающей жидкости при температуре эксплуатации и затруднениям при ручном управлении арматурой.



При установке в трубопроводную систему зауженной арматуры происходит некоторое увеличение общего коэффициента сопротивления системы. Это может ухудшить её гидравлические характеристики при низких давлениях (например, самотёк жидкостей под воздействием статического напора). Если же система находится под давлением, создаваемым насосом, установка зауженной арматуры оказывает незначительное влияние на сопротивление системы и может быть оправдана. Так, заужение до 0,7 от полного прохода может увеличивать потери до 10 %, что для арматуры из высоколегированных сталей с учетом уменьшения стоимости такой арматуры часто считается допустимым.



Однако можно отметить, что для регулирующей арматуры при этом возрастают потери напора и могут ухудшаться условия формирования потока при прохождении через регулирующий затвор, что приводит к ухудшению условий регулирования. В целом при неправильном выборе заужения проходной части арматуры энергопотери могут достигать 15 %.



Гидравлические характеристики

Гидравлической характеристикой запорной и обратной арматуры является коэффициент сопротивления, который является безразмерной величиной, равной потере давления, деленной на скоростное давление. Коэффициент сопротивления рассчитывается по формуле










Где

?Р – потери давления на арматуре, МПа;

? – плотность рабочей среды, кг/м


;

?


– средняя скорость среды, отнесенная к площади сечения на входе арматуры, м/с.

Коэффициент сопротивления определяется экспериментально при полностью открытой арматуре.



В табл. 1.8 приведены коэффициенты сопротивления запорной и обратной арматуры.



Табл. 1.8. Коэффициенты сопротивления арматуры















Гидравлической характеристикой регулирующей арматуры является пропускная способность Kv, м


/ч. Величина Kv численно равна расходу жидкости в м


/ч с плотностью 1000 кг/ м


, протекающей через арматуру при перепаде давления на ней 0,1 МПа и соответствующем значении хода, и рассчитывается по формуле:








где

Q – объемный расход среды м


/ч;

?P – перепад давления на клапане, кг/см


;

? – плотность среды, г/с м


.



В зарубежной практике пропускная способность арматуры рассчитывается по формуле








где

Q – объемный расход среды, галлон/мин;

?P- перепад давления на клапане, фунт/дюйм


;

Gf – удельный вес среды, отнесенный к удельному весу воды, равному единице при температуре 60


F (33,3


C).



Обе формулы относятся к бескавитационному режиму протекания рабочей среды в области квадратичного сопротивления.



Коэффициент сопротивления 


связан с пропускной способностью Kv и Cv зависимостями:








где

FN – площадь условного прохода, см


;

DN – диаметр условного прохода, см.



Числовая корреляция величин пропускной способности приведена в табл. 1.9.



Табл. 1.9. Числовая корреляция пропускной способности








Гидравлической характеристикой предохранительной арматуры является эффективная площадь, равная произведению коэффициента расхода на площадь, к которой она отнесена (по ГОСТ 12.2.085 коэффициент расхода относится к площади седла). По величине коэффициента расхода и значению площади седла по формуле, приведенной в ГОСТ 12.2.085, в зависимости от параметров эксплуатации рассчитывается расход (в ГОСТ называется пропускная способность), который будет проходить через клапан при его срабатывании. Рассчитанный расход должен быть не менее аварийного.



Присоединительные патрубки арматуры

Выбор присоединительных патрубков для соединения арматуры к трубопроводам зависит от давления и температуры рабочей среды, частоты демонтажа трубопроводов или снятия арматуры с них. Типы присоединительных патрубков арматуры приведены ниже.



1) Резьбовые. Резьбовые соединения требуют минимального количества присоединительных элементов, обеспечивают малые металлоёмкость и массу, а также простоту конструкций. Муфтовые соединения, когда трубная резьба выполнена в корпусах арматуры, широко применяются в бронзовых, латунных и чугунных клапанах. Область их применения ограничена рядом недостатков, к которым относятся трудность демонтажа, когда требуется свинчивать трубы, штуцеры или саму арматуру, обычно ограниченные размеры трубы 150 мм и меньшие, широко используются для бронзовых клапанов и, в меньшей степени, в чугунных и стальных клапанах.



2) Фланцевые. Фланцевые соединения арматуры с трубопроводами получили очень широкое применение благодаря их преимуществам: возможности многократного монтажа и демонтажа, хорошей герметизации стыков и возможности их подтяжки, высокой прочности и применимости для широкого диапазона давлений и размеров от 15 мм и более. К недостаткам фланцевых соединений следует отнести возможность ослабления затяжки и потери герметичности в условиях переменных температур и вибраций.



3) Сварные в раструб. Соединение выполнено таким образом, что патрубки клапана вставляются в раструбы трубопровода, и сварочные швы образуются на внешней стороне трубы, чтобы брызги и сварочный грат не могли попасть внутрь трубопровода. Указанное соединение используется только для стальных клапанов, и, как правило, они ограничены размерами до 50 мм для повышенных давлений и температур в трубопроводах, не требующих частого демонтажа.



4) Сварные встык. В этом случае патрубки арматуры и торцы трубопроводов разделывают под сварку. Иногда в соединение устанавливают подкладное кольцо для исключения перекосов и попадания в трубопровод брызг металла и частиц флюса.



Арматура с патрубками под приварку получила широкое применение, поскольку её использование гарантирует полную и надёжную герметичность соединения, что особенно важно для трубопроводов, транспортирующих взрывоопасные, токсичные и радиоактивные вещества или энергонасыщенные среды при высоком давлении и температура. Сварные соединения не требуют ухода и подтяжки, что особенно важно для магистральных трубопроводов и систем АЭС. Сварные соединения экономят металл и снижают массу арматуры и трубопроводов.



5) Обжатые. Этот тип присоединения получается при обжатии конца трубы о сферическую или коническую поверхность патрубка арматуры. Обжим производится накидной гайкой, имеющей внутреннюю поверхность контакта, совпадающую по геометрии с выступом на патрубке арматуры. На патрубке арматуры нарезается резьба, на которую навинчивается гайка. Как правило, соединение обжатием осуществляется для стальных или медных труб, когда по условиям эксплуатации требуется частая разборка соединения.



6) Паяные. Патрубки арматуры выполняются с проточкой, в которую вставляется обработанный конец трубопровода, покрытый припоем. Пайка производится между патрубком арматуры с внешней стороны трубы. Пайка используется при соединении с медными трубопроводами и обычно используется до проходов менее 65 мм. Соединение применяется до температуры, меньшей точки плавления припоя.



7) Соединения с уплотнением. Для получения гладкого втулочного соединения между патрубками арматуры и трубопроводом устанавливают кольцевое уплотнение из пряжи с пробковым наполнителем, пропитанным тетраэтилсвинцом или резиновые кольца. Торцы выполняются в виде фланцев или переходных муфт, присоединяемых болтами к фланцам арматуры, но могут быть и частью арматуры. Такие соединения используются в водоснабжении на чугунной арматуре с диаметром 50 мм и более.



8) Втулочные соединения. Выполняются в виде патрубков на арматуре или трубопроводе. На чугунных трубах со свинцовыми уплотнениями устанавливается рельефные стяжные хомуты. В соединениях с сальниковыми уплотнениями применяются резьбовые или болтовые стяжки. Используются также асбестовые уплотнения. Втулки подвергаются дополнительной обработке для получения гладкой поверхности, аналогичной трубе. Эти соединения также применяются в водоснабжении на арматуре с диаметром 50 мм и более.



9) Цапковые соединения. Термин используется с конца XIX века. На патрубке арматуры выполняется наружная резьба и гладкое внутреннее отверстие, в которое вводится конец трубопровода с буртом, прижимаемым накидной гайкой к торцу патрубка арматуры. Более современное название такого соединения – штуцерное. Применяется для присоединения арматуры небольших размеров.



10) Дюритные соединения. Выполняются в виде патрубков на арматуре или трубах с выступами под резиновые или пластмассовые шланги, которые надвигаются на патрубки и фиксируются, как правило, хомутами.




1.5. Стандарты на арматуру


Стандарты на проектирование

В арматуростроении используется большое количество стандартов, которые позволяют обеспечить взаимозаменяемость арматуры различных изготовителей. В ведущих арматурных странах работают национальные институты стандартизации.



Такие параметры, как строительные длины, присоединения, размеры фланцев, ряды давлений строго регламентированы государственными, а в последние десятилетия некоторыми международными стандартами. Однако, пока попытки Международной организации по стандартизации (ISO) не получили широкой поддержки арматуростроителей многих стран. Так не удаётся гармонизировать немецкие, британские и американские стандарты даже в части присоединительных размеров. Российское арматуростроение, в основном ориентировано на немецкие стандарты, поскольку начало отечественному арматуростроению положили немецкие промышленники.



В настоящее время национальными органами стандартизации через соответствующие комитеты проводится разработка стандартов для различных видов арматуры и материалов, общих для арматуростроителей стран Европы.



Производственные стандарты качества

Качество арматуры в последние десятилетия улучшилось с принятием промышленностью стандартов по качеству. Большая работа в этом направлении была проведена национальными органами стандартизации, установившими основные требования к качеству изготовления и гарантийные обязательства для производителей арматуры



Международными стандартами, устанавливающими требования к качеству, являются:

ISO – Международная организация по стандартизации – ISO 9000;

EN – Европейский Комитет по стандартизации – EN 29000;

API – Американский институт нефти – SPEC QI;

BSI – Британский институт стандартов – BS 5750;

DIN – Немецкий институт стандартов – DIN EN 982;

ГОСТ – ГОССТАНДАРТ – ГОСТ – 40. 9001, ГОСТ 40. 9002 М 88;

ГОСТ Р – ГОССТАНДАРТ России – ГОСТ Р ИСО 9001.



Они распространяются на разработку, производство, установку и обслуживание арматуры, в целом или только на несколько стадий, в зависимости от уровня гарантии качества. Европейские стандарты по качеству EN 29000, ISO 9000, BS 5750 и DIN EN 982 являются взаимозаменяемыми, и соответствие одному стандарту подтверждает соответствие другим.



Американский стандарт API SPEC QI не взаимозаменяем с Европейскими стандартами, несмотря на то, что имеет много общего с ними.



ISO 9000 – международные стандарты, формулирующие требования к системам качества, которые могут использоваться для гарантии качества. Они изложены в четырёх различных разделах:

– ISO 9000–1. Стандарты по обеспечению качества. Руководящие указания по применению.

– ISO 9000–2. Общие руководящие указания по применению ISO 9002 и ISO 9003.

– ISO 9000–3. Общие руководящие указания по применению ISO 9001.

– ISO 9000–4. Руководство по управлению программой надёжности.

– ISO 9000–87. Руководство по выбору стандартов ISO 9000.

– ISO 9001–87 (ГОСТ 40.9001). QS. Модель для обеспечения качества при проектировании и разработке, производстве, монтаже и обслуживании.

– ISO 9002–87. (ГОСТ 40.9002 М88). QS. Модель для обеспечения качества при производстве и монтаже.

– ISO 9003–87. (ГОСТ 40.9003) QS. Модель для обеспечения качества при окончательном контроле и испытаниях.

– ISO 9004–1. Элементы системы качества. Руководящие указания.

– ISO 9004–2. Управление качеством и обеспечение качества.

– ISO 9004–3. Руководящие указания по перерабатываемым материалам.

– ISO 9004–4. Руководящие указания по улучшению качества.

– ISO 9004–5. Руководящие указания по программе качества.

– ISO 9004–6. Руководство качеством при управлении проектом.

– ISO 9004–7. Руководящие указания по управлению конфигурацией.

– ISO 9004–8. Руководящие указания по административным принципам качества.

– ISO 9004–87. Общее руководство качеством и элементы системы качества.



ISO 9000 – система обеспечения соответствия качества и необходимых гарантий (QA) на всех жизненных циклах создания, производства и эксплуатации изделий. Цель применения системы состоит в том, чтобы обеспечить доверие потребителей, и в том, что поставщик собирается выполнять требования контракта, осуществляя мероприятия, как заявлено в его руководстве по качеству.



Федеральным законом Российской Федерации от 27 декабря 2002 года № 174 «О техническом регулировании», в сферу действия которого входят отношения, возникающие при разработке, принятии, применении и исполнении обязательных требований (в форме технических регламентов) к продукции, процессам производства, эксплуатации, хранения, перевозки, реализации и утилизации. Законом предусмотрено применение и исполнение на добровольной основе требований (в форме стандартов) к продукции, процессам производства, эксплуатации, хранения, перевозки, реализации и утилизации, выполнению работ или оказанию услуг, оценке соответствия (в форме сертификации или декларирования).



Испытания арматуры. Производство и контроль

Испытание и осмотр арматуры выполняются в соответствии с требованиями соответствующих стандартов.



Каждый объект испытаний требует осмотра в месте изготовления перед отгрузкой, и изготовитель обязан снабдить изделия свидетельством, заявляющим, что арматура и её части полностью удовлетворяют требованиям соответствующего стандарта.



Подтверждения о проведенных испытаниях и химическом составе материалов для деталей арматуры или заготовок должны быть получены от поставщиков и, когда требуется, предъявляться покупателю. Это требует полного контроля деталей и комплектующих изделий в процессе производства.



Доказательством того, что арматура способна выдерживать давление в течение срока службы, является испытание собранной арматуры 1,5-кратным гидравлическим или пневматическим давлением и давлением, превышающим в 1,1 раза рабочее давление при проверке герметичности.



В мировой практике приняты обозначения классов арматуры фланцев и фитингов, предложенных Американским институтом стандартов ANSI, аналогично принятому в отечественном арматуростроении делению по условному давлению. Стальную арматуру разделяют на семь классов: 150, 300, 400, 600, 900, 1500 и 2500 (в фунтах на квадратный дюйм). Класс 400 применяют редко.



Номинальное давление соответствует максимально допустимому рабочему давлению не при нормальной температуре (как принято в ГОСТ и DIN), а при повышенной (для углеродистой стали классу 150 соответствует номинальная температура 260°C, для других классов – 454°C, а для легированных сталей она доходит до 608°C и зависит от марки стали).



Полные таблицы рабочих и пробных давлений для стальных фланцев и арматуры классов 150…2500 по американскому стандарту ASTME B.16.5, переведенные в метрическую систему единиц, помещены в [5].



В рабочей практике для грубой оценки часто используют давления, соответствующие классам при температуре от –29 до +38 °C. Классам ANSI для углеродистых сталей при этих температурах соответствуют давления:








В табл. 1.10 приведены значения испытательных давлений для каждого класса



Табл. 1.10. Испытательные давления на прочность и герметичность по ANSI








Испытание под давлением на прочность задвижек должно выполняться в сборе с дисками, клиньями и шпинделями в открытом положении, а в кранах – в полуоткрытом.



Испытательная среда должна подаваться по направлению движения рабочей среды. Клапаны с сальниками должны проверяться подачей среды в противоположном направлении. Для определения герметичности верхнего уплотнения клапан полностью открывают. Испытание места уплотнения должно быть выполнено в течение минимального периода, указанного в табл.1.11.



Табл. 1.10. Продолжительность испытаний, с








Давление должно подаваться следующим образом:

1 Задвижки – последовательно с каждой стороны клина;

2 Клапаны запорные – под золотник;

3 Клапаны обратные – со стороны выходного патрубка;

4 Краны – три раза, последовательно, с каждой стороны пробки.



Как правило, не допускается никаких визуально обнаруживаемых утечек в течение испытательного времени, что должно быть отражено в акте испытаний, подтверждающем, что арматура была проверена в соответствии с требованиями стандарта, с отражением фактических давлений и среды, используемой для испытаний.



В отечественном арматуростроении действует ГОСТ 9544–93, устанавливающий величину допустимых утечек при проверке герметичности запирающих элементов различных видов арматуры.



НПФ ЦКБА разработана более современная версия этого стандарта, который в настоящее время согласовывается с национальными органами стандартизации стран СНГ.



Новый стандарт распространяется на все типы запорной арматуры на номинальное давление РN от 0,1 МПа до 42 МПа и диапазон номинальных диаметров DN от 3 до 2000. Установлены классы герметичности затвора A, B, C, D, B1, C1, D1. В данном случае под термином «затвор» понимается совокупность запирающего элемента и уплотнительной поверхности корпуса арматуры.



Изменились некоторые термины и определения. Вот основные из приведенных в стандарте:

– герметичность затвора – свойство препятствовать газовому либо жидкостному обмену между средами, разделенными затвором;

– класс герметичности – характеристика, оцениваемая наибольшей утечкой пробного вещества через затвор;

– утечка – проникновение вещества из герметизированного изделия через течи в затворе под действием перепада полного или парциального давления;

– испытания на герметичность затвора – испытания для оценки герметичности после воздействия пробным веществом под давлением, установленным в стандартах или технических условиях.



Класс A, по которому утечки не допускаются, соответствует классу А ISO 5208 и ГОСТ 9544–93, а также 1–му классу ГОСТ 9544–75 для арматуры систем специального назначения. Установлен для всех типов запорной арматуры от DN 3 до DN 200 при номинальных давлениях от РN 1 до РN 420 и с номинальными диаметрами от DN 250 до DN 2000 при номинальных давлениях от РN 1 до РN 200.

Испытания проводят воздухом давлением 0,6 МПа или водой номинальным давлением, умноженным на 1,1. Допускается затворы арматуры номинальным диаметром от DN 3 до DN 200 испытывать воздухом номинальным давлением.



Класс В соответствует классу В ISO 5208 и ГОСТ 9544–93. Утечки для арматуры этого класса (в см3/мин) рассчитываются по формулам:

для воды 0,0006 ? DN;

для воздуха 0,018 ? DN.



Класс В1 соответствует 1 классу ГОСТ 9544–75 для клапанов. Испытания проводятся воздухом. В стандарте даны таблицы допустимых утечек при испытании давлением 0,6 МПа и с пересчетом утечек для испытательного давления, равного номинальному.



Класс С соответствует классу С ISO 5208 и ГОСТ 9544–93. Утечки для арматуры этого класса (в см


/мин) рассчитываются по формулам:

для воды 0,0018 ? DN;

для воздуха 0,18 ? DN.



Класс С1 соответствует 1 классу ГОСТ 9544–75 для прочей арматуры (кроме клапанов) и 2 классу ГОСТ 9544–75 для клапанов. Приведены таблицы утечек при испытании запорной арматуры всех типов при давлении 0,6 МПа и с пересчетом утечек для испытательного давления, равного номинальному.



Класс D соответствует классу D ISO 5208 и ГОСТ 9544–93. Утечки для арматуры этого класса (в см


/мин) рассчитываются по формулам:



для воды 0,006 ? DN;

для воздуха 1,8 ? DN.



Класс D1 в части норм утечек при испытании воздухом соответствует 2 классу ГОСТ 9544–75 для прочей арматуры (кроме клапанов), а при испытании водой – 3 классу ГОСТ 9544–75. Применяется для всех типов арматуры до DN 2000. В стандарте приведены таблицы допустимых утечек при испытании воздухом давлением 0,6 МПа и номинальным давлением, а также при испытании водой номинальным давлением, умноженным на 1,1.



Соотношение допустимых утечек для DN 50…150 при испытании водой и воздухом приведены в табл. 1.12 и табл. 1.13.



Табл. 1.12. Допустимые утечки при испытании водой давлением 1,1 PN, см


/мин




* нормы герметичности при испытании водой для этих классов не предусмотрены



Табл. 1.13. Допустимые утечки при испытании воздухом давлением 0,6 МПа для запорной арматуры на PN 6, см


/мин






* нормы герметичности при испытании воздухом для этих классов не предусмотрены



Допустимые утечки, установленные в новом стандарте, соответствуют или меньше утечек по стандартам API–6D и DIN 3230.



Соответствие классов герметичности затворов нового стандарта международным стандартам, ГОСТ 9544–75 и ГОСТ 9544- 93 приведено в таблице 1.14.



Табл. 1.14 – Соответствие классов герметичности








В зарубежной практике при оценке проницаемости часто употребляется относительная единица измерения ppm. ГОСТ 8.417 определяет её как «миллионная доля» (млн-6). Эта единица применяется при использовании течеискателей. В США чаще всего применяют метановые течеискатели, причём концентрация метана в них должна быть не менее 95–98 %. Испытательная среда подаётся во входной патрубок закрытой арматуры, а утечка определяется в заданном объёме выходной полости арматуры.



По согласованию с покупателем или по условиям спецификации осуществляется дополнительный осмотр отклонений при изготовлении, и исправления дефектов магнитной, радиографической или цветной дефектоскопии. Любые готовые клапаны или заготовки и детали, которые имеют отклонения от чертежей изготовителя или стандартов, должны быть забракованы и отправлены в изолятор брака, как заявлено в Руководстве качества.



Испытание и контроль опытных образцов арматуры

Прежде всего, перед постановкой на производство опытные образцы арматуры должны быть подвергнуты испытаниям и дополнительному контролю. Эти испытания проводятся в объёме большем, чем для серийных изделий. Они должны включать определение гидравлических характеристик, испытания для определения ресурса арматуры в циклах или часах. Арматура должна быть также подвергнута испытанию на огнестойкость, если в конструкциях используются мягкие уплотнения.



Огнестойкость, критерии и методы проверки

Стандарты, требующие проверок на огнестойкость, исходят из теоретического предположения, что пожар возникнет, и определяют, как арматура должна работать в такой ситуации.



Четыре стандарта устанавливают безопасные по огню исполнения арматуры:

API – Американский нефтяной институт, API 607

BSI – Британский институт стандартов, BS 6755

Exxоn – Независимые компании по нефтепереработке, BP3–14–1

FM – Взаимные исследования производителей, FMRC 7440.



Эти стандарты отражают важные испытательные критерии для размеров и типов арматуры, используемой в промышленности.

Сводка их требований приведена в табл. 1.15.



Табл. 1.15. Сравнение требований к испытаниям на огнестойкость















Хотя имеются некоторые различия в рабочих средах, условиях потока, топливе, продолжительности воздействия огня, размерах труб, и ориентации арматуры, также как в методах измерения и допустимости протечек, которые являются приемлемыми, цель каждого испытания в том, чтобы установить минимальный безопасный по огню уровень для арматуры в эксплуатации. В многомиллионном химическом процессе, арматура может играть роль, которая является полностью непропорциональной её размеру и стоимости.



Эти маленькие, относительно недорогие изделия являются критическими в безопасном осуществлении процесса и, так как арматура часто является первой линией в предупреждении распространения огня для огнеопасных сред, было бы чрезвычайно неблагоразумно устанавливать в системы арматуру, которая не является пожаробезопасной.




1.6. Методы выбора арматуры


Для правильного выбора арматуры должна быть проанализирована следующая существенная информация:



1) Какова функция арматуры?

А) Только открытие или закрытие

B) Регулирование

C) Предохранительная

D) Частое или редкое срабатывание



2) Как арматура будет управляться?

A) Вручную

B) Пневматически

C) Электрически

D) Гидравлически



3) Рабочая среда

A) Коррозийная

B) Абразивная

C) Расход рабочей среды

D) Скорость потока

E) Давление

F) Температура



4) Диаметр трубопровода и тип присоединения.

A) Фланцевое

B) На резьбе

C) На сварке в стык

D) На сварке в раструб



5) Какова скорость срабатывания?

A) Аварийное быстрое срабатывание

B) Стандартное использование



6) Как арматура должна обслуживаться на месте установки?

A) Должен быть предусмотрен доступ к деталям через верхний разъём или также через патрубки?

B) Может ли арматура обслуживаться на месте эксплуатации или требуется её доставка изготовителю?



7) Насколько важна готовность арматуры к немедленному использованию?

A) Стандартный клапан, полученный со склада

B) Специальный клапан, изготовленный на заказ



Если вышеупомянутая информация известна, чтобы арматура соответствовала соответствующим стандартам, следует рассмотреть следующее:



1) Оценка давления и температуры

Согласно стандартам, максимальное давление для фланцев и сварных соединений на сварке должны соответствовать выбранным давлению и температуре.



2) Выбор материала

Материалы должны обеспечивать совместимость с рабочей средой и физически противостоять износу, падению давления при дросселировании (стойкость к кавитации) и эрозии – это основные соображения при выборе материалов для получения достаточного ресурса арматуры, высококачественного изготовления и разумной стоимости.



Среда, которая будет контактировать с арматурой, может характеризоваться как:

A) Очищенная и чистая

B) Вязкая

C) Пульпа

D) Коррозийная

E) Эрозионная

F) Криогенная



Все вышеизложенные рекомендации должны использоваться для разработки рабочих спецификаций изготовителей и технических регламентов для конкретных технологических процессов, в которых арматура будет использоваться.



Некоторые рекомендации по выбору арматуры для конкретных условий эксплуатации приведены ниже:



Табл. 1.16. Применение арматуры в зависимости от предъявляемых требований и условий эксплуатации






Обозначения

1- задвижка, 2 – клапан сальниковый, 3 – клапан сильфонный, 4 – кран пробковый, 5 – кран шаровой, 6 – дисковый поворотный затвор, 7 – клапан мембранный или задвижка шланговая, 8 – электромагнитный клапан



Табл. 1.17. Применение арматуры в зависимости от строительно-монтажных требований






Обозначения

1- задвижка, 2 – клапан сальниковый, 3 – клапан сильфонный, 4 – кран пробковый, 5 – кран шаровой, 6 – дисковый поворотный затвор, 7 – клапан мембранный или задвижка шланговая, 8 – электромагнитный клапан



3) Опыт эксплуатации арматуры

Опыт эксплуатации арматуры может также определять тип арматуры, которую нужно использовать. Различные отрасли промышленности предпочитают, чтобы специфическая арматура отвечала их требованиям. Многое зависит также и от привлекаемых инжиниринговых компаний, имеющих определенный опыт включения арматуры в свои проекты. Данные показаны в табл. 1.18.



Табл. 1.18 Применение арматуры по опыту эксплуатации








4) Спецификации

При запросе у изготовителя или посредника необходимо, чтобы все технические требования были изложены в спецификации. Изготовитель или посредник, в свою очередь, должны дать полную характеристику поставляемой арматуры. Это гарантирует, что по требованию клиента правильно подобранная арматура будет быстро поставлена с минимальной стоимостью.




2. Виды трубопроводной арматуры





2.1. Запорная арматура





2.1. 1. Арматура с прямолинейным перемещением штока (линейная арматура)


ЗАДВИЖКИ

Задвижки являются наиболее распространенным видом трубопроводной арматуры. Они состоят из следующих основных деталей: корпуса, крышки, запирающего элемента и шпинделя. Запирающий элемент перемещается между уплотнительными кольцами корпуса посредством шпинделя, закрывая при этом проход для потока жидкости.



Классификация задвижек представлена на рис. 2.1.






Рис. 2.1.. Классификация задвижек



Конструктивно задвижки делятся на задвижки клиновые и параллельные по типу расположения уплотнительных поверхностей.



Задвижки клиновые делятся на задвижки с жестким сплошным и упругим клином, а также двухдисковые. Задвижки параллельные делятся на листовые (шиберные), однодисковые и двухдисковые.



Задвижки подразделяются на полнопроходные и с зауженным проходом, применяемым в ряде случаев, например, при высоком перепаде давлений. Задвижки подразделяются на задвижки с невыдвижным и выдвижным шпинделем, где применяются резьбовые пары, установленные снаружи и не контактирующие со средой, шланговые задвижки, и прочие (коробчатые, поворотные и др.).



Основными положениями для запирающего элемента являются или полностью открытое или полностью закрытое. Задвижки, имеющие внутри корпуса шпиндель с приводной гайкой, находящимся в контакте со средой, являются задвижками с невыдвижным шпинделем (рис. 2.2.).






Рис. 2.2. Задвижка с невыдвижным шпинделем



Такие задвижки не применяются в случаях загрязненных или коррозионных сред. Для подобных условий применяются резьбовые пары, установленные снаружи, вне контакта с рабочей средой. Это задвижки с выдвижным шпинделем (рис. 2.3.).






Рис. 2.3. Задвижка с выдвижным шпинделем



Задвижки широко распространены для пропуска сплошного потока среды. Запирающий клин или диски выводятся из траектории движения потока и обеспечивают минимальный перепад давления (гидравлическое сопротивление) пара, воды, газа и многих других сред. Однако задвижки не могут быть рекомендованы для целей регулирования потока, поскольку вероятно возникновение эрозии на деталях в положениях, близких к закрытию.



Основные детали могут выполняться в различных исполнениях и снабжаются патрубками с резьбой, под приварку и фланцами. Задвижки изготавливаются в широком диапазоне конструктивных исполнений, включающих различные запирающие элементы, уплотнительные седла для удовлетворения различных требований эксплуатации.



Задвижки со сплошным клином

В этих задвижках запирающий элемент выполнен в виде сплошного клина с соответствующими исполнениями уплотнительных колец в корпусах задвижек (рис. 2.4.).






Рис. 2.4. Задвижка со сплошным клином



Преимущества резьбы на шпинделе, действующей с учетом угла клина, обеспечивают соответствующее распределение усилий, включающих давление среды, без необходимости приложения больших усилий на маховике. Уплотнительные поверхности выполняются металл-по-металлу, наплавляемыми твердыми наплавками (например, стеллитом, ЦН 6, ЦН 12), с фторопластовыми кольцами, запрессованными в клин, или могут быть полностью защищены покрытием типа фторопласта. В некоторых конструкциях уплотнительные поверхности выполняются из упругого материала. Это обеспечивает плотное перекрытие потока малым крутящим моментом.



Мягкое уплотнение применяется, в основном, для целей управления коррозионными или чистыми средами, (например, питьевой водой).



Конструкция задвижек с мягким уплотнением хорошо осуществляет уплотнение, обеспечивая герметичность во входном и выходном патрубках. Патрубок для дренажа предусматривается в центральной камере между уплотнительными поверхностями. Об утечке можно судить по течи через дренажный патрубок.



Для целей водоснабжения используются чугунные задвижки с цельным клином, в которых клин покрывается эластомерным материалом.



Задвижки с упругим клином

Для исключения прикипания при высоких температурах и достижения хорошей герметичности разработан упругий диск, состоящий из двух половин, соединенных в центре, например, коротким валом, позволяющим менять половинкам клина положение друг относительно друга на несколько градусов (рис. 2.5.). Упругий клин делает задвижку герметичной с двух сторон в широком диапазоне давлений и температур и требует минимального управляющего усилия.










Рис 2.5. Упругий клин



Двухдисковые задвижки

Запирающий элемент выполнен в виде двух дисков, которые прижимаются к параллельным седлам посредством клина, принудительно раздвигающего диски (рис. 2.6.).










Рис 2.6. Двухдисковая задвижка



Это обеспечивает герметичность уплотнения, как на входе, так и на выходе независимо от влияния перепада рабочей среды. Первым движением на открытие диски освобождаются от усилия прижатия к седлам, и дальнейший подъем происходит без трения, что предохраняет уплотнительные поверхности от износа.



Двухдисковые задвижки используются в водяных, нефтяных и газовых магистральных трубопроводах. Для пара двухдисковые задвижки обычно не применяют, поскольку быстрое расширение и высокая скорость потока пара вызывают вибрацию внутренних деталей, что является причиной ускоренного износа.



Если растущая температура воздействует на закрытую задвижку, возрастает опасность роста давления между дисками.

Однако, благодаря перпендикулярности к оси патрубков и параллельности друг другу, ремонт или притирка уплотнительных поверхностей в этих задвижках осуществляется легче, чем в задвижках с клиновым запирающим элементом.



Выбор конструкции задвижек должен быть направлен на получение оптимального соотношения цены и качества.



Пример: сравним 4 исполнения стальных задвижек по клиньям: 1) цельный клин;

2) цельный клин с фторопластовым уплотнением;

3) упругий разрезной клин;

4) 2-х дисковый клин.

Каждое из этих исполнений имеет как положительные, так и отрицательные стороны.

Наименьшей металлоемкостью обладают задвижки с цельным клином, но в тоже время для обеспечения герметичности по затвору являются и самыми трудоемкими при подгонке углов между корпусом и клином. А 2-х дисковые задвижки наоборот, являются самыми металлоёмкими, но позволяют с меньшими трудозатратами добиться нужной герметичности по затвору.

Задвижки с упругими разрезными клиньями занимают промежуточное положение по этим свойствам. Наилучшими, в этом плане, являются задвижки с цельным клином с фторопластовым уплотнением, но их применение ограничено по температуре и повышенными требованиями к отсутствию примесей в рабочей среде.



Шиберные (однодисковые) задвижки с толстостенным шибером

Запирающий элемент (шибер) в некоторых модификациях задвижек выполнен в форме плиты с параллельными уплотнительными поверхностями (рис. 2.7.).






Рис. 2.7. Шиберная задвижка с массивным (толстостенным) шибером



В нем выполнено отверстие с диаметром, равным диаметру патрубков, которое устанавливается против патрубков в открытом положении. В закрытом положении против патрубков находится плита без отверстия. Задвижка характеризуется формой корпуса, имеющего высоту над патрубками больше традиционной для размещения удвоенной высоты запирающего элемента.



Простота, полнопроходность, неразрывность потока рабочей среды, возможность получения различных рабочих характеристик уплотнений в седлах и запирающем элементе делает эти задвижки широко применяемыми у различных потребителей.



Шиберные ножевые задвижки

Как следует из названия, в ножевые задвижки устанавливается запирающий элемент с острой кромкой, подобной ножу или гильотине, для перекрытия потока рабочей среды (рис. 2.8.).






Рис. 2.8. Шиберная ножевая задвижка



Ножевой запирающий элемент помещается в корпусе, но обычная конструкция сальникового уплотнения не может быть применена. Задвижки идеально подходят для использования на вязких, порошкообразных средах, пульпах, шламах, сточных водах и применяются в горной, пищевой, цементной, целлюлозно-бумажной промышленности. Ножевые задвижки изготавливаются с уплотнениями металл-по-металлу или мягкими седлами, которые полностью герметичны в обоих направлениях.



Существуют шиберные задвижки с корпусами прямоугольной формы (рис. 2.9.).






Рис. 2.9. Коробчатая задвижка с корпусом прямоугольной формы



Эти конструкции предназначены для управления большими объемами чистой воды и/или сточных вод, а иногда – на газоходах особо крупных размеров и обычно изготавливаются из листовой стали или чугуна.



Коробчатые задвижки прямоугольной формы изготавливаются с преимущественным соотношением размеров сторон 2:3 при вертикальном монтаже и 4:3 при горизонтальном. Маховики применяются обычные, шпиндель выдвижной, допускающий контакт с жидкостью и легкое пополнение смазки.



Параллельные задвижки

Параллельные двухдисковые задвижки с начала прошлого века и до настоящего времени остаются самой распространённой конструкцией. Заводы, начинающие производство арматуры, (Лангензипена в 1878, Георгиевский чугунолитейный в 1912, Мышегский арматурный в 1938 году и другие), первой изготавливали именно эту задвижку. Сегодня она известна по т/ф 30чббр (30ч90ббр) (рис. 2.10.)






Рис. 2.10. Параллельная двухдисковая задвижка



Дальнейшее развитие получили параллельные двухдисковые задвижки с пружинами, установленными между дисками. Пружины прижимают диск с незначительным усилием к уплотнительным кольцам, а герметичность обеспечивается только в седле на выходе, когда давление отодвигает диск на входе и передает усилие для уплотнения на выходной диск. Когда давление во входном патрубке и полости между дисками выравнивается, пружина прижимает диск на входе к седлу.



Параллельные задвижки используются на небольших перепадах давления, необходимых для достижения герметичности и очистки систем. При закрытии обеспечивается изменение угла между дисками, как в задвижках с упругим клином, для расширения параметров, когда требуется применение при изменении температуры в широком диапазоне. Это делает конструкцию идеальной для использования на паре.



Практика применения задвижек выявила несколько основных правил сильных решений при разработке задвижек. Для любых задвижек с металлическим уплотнением для получения герметичности высокого класса и долговечности целесообразно выполнять следующие рекомендации:

– ширина уплотнительных поверхностей клина должна быть больше ширины уплотнительных поверхностей корпуса. Это исключает возникновение вмятин на корпусе от колец клина;

– твёрдость поверхностей клина должна быть выше, чем у аналогичных поверхностей на корпусе не менее чем на 30 единиц по Бринеллю;

– корпус в области расположения уплотнительных поверхностей должен выполняться массивным для исключения монтажных деформаций.



Приведённая рекомендация актуальна и для других видов арматуры. Несмотря на требования инструкций по эксплуатации, запрещающих нагружение патрубков арматуры при монтаже, это явление имеет место в жизни, когда арматура воспринимает нагрузки от исправления несоосности трубопроводов относительно арматуры, и объективно существуют трудности выполнения точной подгонки труб, предназначенных для соединения с арматурой. Последняя вынуждена воспринимать нештатные нагрузки, что приводит к нарушению точности геометрии уплотнительных поверхностей и их подгонки при сборке. Поэтому необходимо выполнять патрубки менее жёсткими, чем другие элементы конструкции.



Шланговые задвижки

Шланговые задвижки – наиболее простые конструкции арматуры, где используют эластомерные патрубки или трубы, которые могут быть пережаты в средней части. Используются траверсы, шпиндель с маховиком, а стенки патрубка пережимаются траверсами до соприкосновения, обеспечивая полное закрытие прохода (рис. 2.11.).






Рис. 2.11. Шланговая задвижка



Управляющий механизм и корпус арматуры не контактируют с рабочей средой. Это делает задвижки чрезвычайно эффективными в управлении агрессивными и сильно коррозионными средами, а их полнопроточные гидравлические характеристики обеспечивают хорошие результаты в управлении пульпами, вязкими, сыпучими средами и взвесями.



Патрубки шланговых задвижек изнашиваются и требуют замены, но конструкция задвижек настолько проста, что замена патрубков может быть легко осуществлена. Патрубки не могут быть восстановлены обычным обслуживанием в связи с экстремальными деформациями, работой с пережимом и интенсивным повреждением от воздействия абразивов и поэтому требуют профилактического ремонта. Задвижки используются преимущественно в горной промышленности, на целлюлозно-бумажных комбинатах, в металлургии, стекольной промышленности и производстве пищевых продуктов.



Исполнение шпинделей

Существуют три базовых исполнения резьбовых пар шпинделя и ходовой гайки, различаемые по расположению в арматуре:

а). Внутреннее расположение, выдвижной шпиндель.

b). Внутреннее расположение, невыдвижной шпиндель.

c). Наружное расположение, выдвижной шпиндель.



Внутреннее расположение и выдвижной шпиндель легки в изготовлении и наиболее широко применяются в арматуре малых размеров. Их полезным свойством является возможность определить положение запирающего элемента по положению шпинделя. Однако внутренний резьбовой узел не используется в случае применения задвижек на коррозионно-активных или вредных средах, вызывающих эрозию, а также на высокотемпературных средах, когда их применение может стать причиной заклинивания резьбы внутри корпуса арматуры.



В случае внутренней резьбы и невыдвижного шпинделя, последний не имеет осевого перемещения, и совершает только вращательное движение. Это исполнение применяется преимущественно в случаях, когда ограничена высота помещения. Устранение подъема и опускания шпинделя снижает износ сальникового уплотнения, а также внесение в рабочую среду загрязнений.



Во внешнем резьбовом узле при выдвижном шпинделе резьбовая пара расположена снаружи корпуса арматуры и не подвержена воздействию рабочей среды. Резьба шпинделя удобна для смазывания, а положение шпинделя соответствует степени открытия прохода. Высота помещения должна быть достаточной для полного хода шпинделя, который необходимо защитить от повреждений.



Основные технические характеристики задвижек










Основные технические характеристики шланговых задвижек










ЗАПОРНЫЕ КЛАПАНЫ

Запорные клапаны с резьбовыми шпинделями создаются для регулирования или перекрытия потока среды. Они открывают и закрывают проход немного быстрее, чем задвижки, и являются эффективными, когда необходимы частые переключения или регулирование.



Они, однако, неэффективны для управления легкокипящими жидкостями, поскольку могут вызывать разрыв потока в связи с изменением направления движения жидкости.



Общий вид клапана показан на рис. 2.12.






Рис. 2.12. Запорный клапан проходной

1 – корпус; 2 – затвор (золотник); 3 – крышка; 4 – сальниковая набивка;

5 – шпиндель; 6 – ходовая гайка; 7 – маховик; 8 – фланец сальника;

9 – нажимная втулка; 10 – седло корпуса; 11 – парубок под приварку

к трубопроводу (присоединительный патрубок)



Поток через запорные клапаны, в отличие от потока в задвижках, изменяет направление движения. Клапаны имеют высокий коэффициент гидравлического сопротивления, зачастую вызывают турбулентность и приводят к существенным потерям давления.



Классификация клапанов представлена на рис. 2.13.






Рис. 2.13. Классификация клапанов



По типу корпуса их разделяют на проходные, угловые, прямоточные. По типу уплотнения на сальниковые и бессальниковые. По типу герметизирующего элемента на сильфонные, мембранные и шланговые. По типу затвора на тарельчатые, поршневые, мембранные и шланговые. По типу привода – с ручным приводом, электроприводом, пневматическим и гидравлическим приводом.



При регулировании потока степень открытия проходного сечения пропорциональна числу оборотов маховика. Оператор может приблизительно оценить величину расхода по числу оборотов маховика. Например, если для полного открытия клапана необходимо сделать 4 оборота, один оборот соответствует 25 % расхода, два оборота – 50 % и т. д.



Золотник может иметь различные конфигурации для получения лучших гидравлических характеристик. Он может быть выполнен конической формы в сочетании с коническим седлом в корпусе, позволяющим получить удовлетворительную гидравлическую характеристику и хорошую устойчивость к задиру, эрозионному износу и рискам, возникающим в процессе регулирования (дросселирования).



Другая специальная конструкция клапана может использовать полый золотник V-образной формы или корпус с обработанным по заданному контуру седлом для расширения диапазона изменения расхода.



Седло и золотник с уплотнением из фторопласта или другого пластика используется для достижения герметичного закрытия от незначительного (минимального) усилия.

Мягкое уплотнение, однако, быстро повреждается от возникновения на нем рисок.



Как правило, золотник и шпиндель являются отдельными деталями и соединяются таким образом, что золотник поворачивается независимо от шпинделя. Это позволяет золотнику контактировать с седлом по большой площади, но с трением, что может вызвать повреждение уплотнительных поверхностей.



Заменой золотника можно продлить ресурс клапана в системе после демонтажа вместе с крышкой. Уплотнительные характеристики могут быть также быстро восстановлены до состояния «как новые» заменой уплотнительных колец.



Конфигурации корпусов запорных клапанов описаны ниже:

1. Проходной клапан с входным и выходным патрубками, расположенными на одной оси.

2. Угловой клапан с входным и выходным патрубками, расположенными под углом 90


. Поток делает в нем только один поворот, что уменьшает падение давления по сравнению с прямоточными (проходными) клапанами. Для лучших схемных решений угловые клапаны могут, с целью экономии фитингов, использоваться как 90-градусные отводы (рис. 2.14.)






Рис. 2.14. Запорный клапан угловой



3. Наклонная конструкция с входным и выходным патрубками, расположенными на одной оси, но проходное отверстие выполнено наклонным, что обеспечивает благоприятные условия для движения потока, в результате чего становятся меньше потери давления на клапане (рис. 2.15.).






Рис. 2.15.. Прямоточный запорный клапан



4. Игольчатая конструкция для обеспечения лучших характеристик регулирования потока, обычно применяемая на арматуре малых диаметров. Золотник выполнен с заостренным (игольчатым) профилем и изготовлен заодно со шпинделем, который садится в отверстие седла. Резьба шпинделя выполняется с большей точностью, чем обычно, для обеспечения добротного регулирования потока (рис. 2.16).






Рис. 2.16. Игольчатый запорный клапан



Хотя размеры запорных клапанов могут быть много большими, стандартные проходы не превосходят 200 мм (8?). Свыше этих размеров осевые нагрузки на шпиндель от давления среды, действующего на площадь золотника, делают ручное управление затруднительным или даже невозможным.



Специальные разгруженные конструкции предусматривают уравновешивание осевых усилий от золотника и делают управление легче.



Запорные клапаны могут быть с выдвижным шпинделем, что позволяет осуществлять визуальный контроль за положением золотника и степенью открытия клапана, и облегчает смазку резьбовой пары. С другой стороны, невыдвижной шпиндель также имеет применение, так как позволяет осуществлять монтаж в условиях, ограниченных по высоте и уменьшить износ. Они обычно изготавливаются из чугуна, углеродистой, карбамидной и нержавеющей сталей, бронзы или латуни для использования на воде, нефти, маслах, в химической промышленности и строительстве. Для увеличения срока службы на уплотнительных поверхностях стальных клапанов применяется наплавка золотников легированной сталью с 13 % содержанием хрома или стеллитом.



Практика использования и проектирования клапанов позволяет предложить некоторые рекомендации при их выборе:

– в запорных клапанах, предназначенных для работы с количеством циклов более 1000 следует применять плоское уплотнение;

– конусное уплотнение целесообразно использовать при наличии в рабочей среде загрязнений;

– в клапанах с конусным уплотнением золотник и шток не должны вращаться, причём, чем выше рабочее давление и температура, тем более жесткие допуски на размеры и геометрические характеристики должны задаваться. Особое внимание должно быть обращено на обеспечение соосности проходного отверстия с резьбовой втулкой;

– следует избегать резьбовых соединений корпусов с крышками при температурах 200°C и выше;

– хорошо зарекомендовали себя упругие элементы, вводимые в конструкции уплотнений, например, тонкостенные кольца, выполняемые на плоских уплотнительных поверхностях корпусов, способные упруго деформироваться при контакте с конусными золотниками.



ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ

Это небольшие клапаны, которые управляются соленоидами, и обычно используются в контрольно-измерительной аппаратуре.






Рис. 2.17. Общий вид электромагнитного клапана



Клапаны открываются и закрываются электрическим сигналом и могут изготавливаться в двух основных моделях:

1) Клапаны обычно в открытом положении, когда электрический сигнал выключен (НО).

2) Клапаны обычно в закрытом положении, когда электрический сигнал выключен (НЗ).



Схема работы электромагнитного клапана представлена на рис. 2.18.






Рис. 2.18. Схема работы электромагнитного клапана



Электромагнитные клапаны могут обслуживаться переменным током от сети, через трансформатор или постоянным током от батареи или генератора постоянного тока. Электромагнитные клапаны постоянного тока действуют медленно и работают на низких давлениях.



Соленоидные катушки переменного тока действуют гораздо быстрее и обеспечивают работу клапанов при более высоких давлениях. На рис. 2.19. показан клапан прямого действия, в котором сердечник закрывает или открывает основное отверстие клапана.






Рис. 2.19. Электромагнитный клапан прямого действия



Другой тип электромагнитного клапана (непрямого действия) показан на рис. 2.20–2.21






Рис. 2.20- 2.21. Электромагнитный клапан непрямого действия



В нём сердечник закрывает или открывает вспомогательное отверстие, соединяющее полость над мембраной с трубопроводом за клапаном. Поскольку площадь мембраны больше площади основного золотника, давление среды через мембрану прижимает золотник к седлу, обеспечивая герметичность.



При открытии вспомогательного отверстия при срабатывании соленоида, давление над мембраной сбрасывается в трубопровод за клапаном, и под действием давления среды золотник поднимается, открывая основное отверстие.



Другие, более сложные трёх – и четырехходовые клапаны, управляемые от соленоидов или вручную, называемые распределителями, используются в широком диапазоне специальных применений.



Технические характеристики

Размеры 6…400 мм (1/4?…16?)

Рабочее давление 1,9–8,6 МПа (275…1250 фн/дюйм


)

Рабочая температура -196


С…650


С (-320


F…1200


F)

Материалы Большинство металлов

Присоединения Резьбовое, фланцевое, на сварке

Применение В обычных и экстремальных случаях, при высоких температурах, в криогенных и агрессивных средах



МЕМБРАННЫЕ КЛАПАНЫ

Мембранные (диафрагмовые) клапаны были впервые применены в 1920-х годах в линиях сжатого воздуха и проявили себя настолько успешно, что быстро распространились в управлении другими рабочими средами. Сегодня трудно найти отрасль промышленности, строительства и транспорта, где не применяются мембранные клапаны. Существуют две базовые конструкции, как показано на рис. 2.22.






Рис. 2.22. Мембранные клапаны



1. С затвором типа «улыбка», отличающимся поднятым седлом в корпусе, над которым смонтирована эластомерная или фторопластовая диафрагма. Когда маховик опускает шпиндель вниз для закрывания клапана, диафрагма садится на выступ, отсекая поток рабочей среды.

2. Полнопроходной тип, в котором используется диафрагма, закрепленная параллельно оси потока и полное закрытие осуществляется опусканием траверсы, прижимающей диафрагму к стенкам корпуса. Полное открытие проходного отверстия обеспечивает минимальное гидравлическое сопротивление.



Клапаны состоят из трех основных деталей – корпуса, мембраны (диафрагмы) и управляющего узла в крышке, изолированного от рабочей среды.



Корпус может быть изготовлен из широкого диапазона материалов, включая чугун, шаровидный чугун, бронзу, углеродистую и нержавеющую сталь. Он может быть покрыт разными эластомерами, полимерами, быть стеклянным или полностью полимерным для высокоагрессивных и абразивных сред. Перечень материалов диафрагм с каждым годом становится все шире, часть их приведена в таблице 2.1, где названы типовые примеры, позволяющие применять клапаны в широком диапазоне температур и рабочих сред.



Поскольку диафрагма изолирует движущиеся детали от воздействия рабочих сред, крышка может быть изготовлена из чугуна или чугуна с покрытием для большинства условий применений. Это также позволяет эффективно применять клапаны для управления агрессивными средами, включая как коррозионные, так и нейтральные. Благодаря этому, клапаны используются в широком диапазоне промышленных технологий, включая химическую, пищевую, фармацевтическую, биотехнологическую, нефтяную, газовую, горную, нефте- и газоперерабатывающую промышленность, на производстве целлюлозы и бумаги, в водоснабжении и энергетике.



Табл. 2.1. Материал мембран для разных применений




* Торговая марка Дю Понт









2.1.2. Арматура с вращающимся движением штока


ПРОБКОВЫЕ КРАНЫ

Название кран пробковый или просто кран дано старейшему виду арматуры, состоящему из корпуса с коническим или, много реже, цилиндрическим посадочным отверстием, в котором установлена пробка. Термин «пробковый кран» относится и к шаровым кранам. Обычно пробковыми кранами называют только конусные и цилиндрические краны.



В пробке имеется сквозное отверстие, положение которого относительно проходных отверстий в корпусе определяет степень открытия и расхода среды через кран. Положения пробки, отличающиеся на 90


, определяют полное открытие или закрытие потока среды. Краны, как и другие поворотные конструкции арматуры, требуют минимального объема для монтажа, просты в управлении, обладают быстрым срабатыванием и создают относительно небольшие искажения потока (турбулентность).



Падение давления в кране небольшое, и краны легко выполняются многоходовыми. Краны используются во всех отраслях промышленности в условиях, где закрытие при низких температурах допустимо, и полости в арматуре незначительны.



Существует много модификаций и конструкций кранов:

1. Краны без смазки, в которых можно конструктивно обеспечить низкое усилие трения между поверхностями пробки и корпуса.

2. Краны со смазкой, в которых специальная смазка-уплотнитель может вводиться при периодическом обслуживании под давлением между уплотнительными поверхностями пробки и корпуса.



Они могут быть далее классифицированы по конфигурации пробки и патрубков как:

1. Полнопроходные цилиндрические – с полной площадью круглого отверстия как в пробке, так и в корпусе.

2. Прямоугольные – с прямоугольными отверстиями в корпусе и пробке.

3. Зауженные – когда площадь отверстия в пробке меньше площади стандартных трубопроводов.

4. Ромбовидные – когда отверстие в пробке выполнено ромбовидной формы.

5. Многоходовые – с тремя или более патрубками, используемые главным образом для отвода или перемещения среды.

6. Эксцентриковые – объединяющие половину пробки для прямого пропуска среды с высокой пропускной способностью и односторонним герметичным закрытием.



Краны изготавливаются из различных материалов, а именно: бронза, латунь, углеродистая и нержавеющая стали, наряду со сплавами и полимерами. Существуют также полно проходные краны, где все контактирующие со средой поверхности покрыты фторопластом или плавким графитом для высококоррозионных и токсичных сред.



Несмазываемые краны

Это наиболее простая конструкция кранов, широко используемая в химической и нефтехимической промышленности, где смазки неприменимы. Подтягиваемый сальник или подпружиненная пробка уменьшают износ и облегчают управление. Конические или параллельные пробки гарантируют управление без заеданий с обеспеченным посадочным усилием и требуют меньшего технического обслуживания. Самосмазывающиеся свойства пластиков, например, фторопласта, делают краны особо привлекательными для применений, где обычные смазки для арматуры недопустимы (рис. 2.23.).






Рис. 2.23. Кран конический



Вариант крана без смазки изображен на рис. 2.24., где пробка имеет форму двух сегментов, соединенных в нескольких местах и образующих упругую уплотнительную конструкцию, которая прижимается к корпусу крана.













Рис. 2.24. Кран конический двухсегментный



Пробка выполнена заодно со штоком крана и может подниматься и опускаться при повороте на 90


с использованием специального управляющего устройства. Эта конструкция устраняет износ уплотнения, является полностью пожаростойкой и герметичной во входном и выходном патрубках, таким образом, обеспечивая «двойной» дренаж в закрытом положении.



Краны со смазкой

Это конструкция широко используется в области нефтепродуктов, распределительных и очистных установках до давления 4,2 МПа бывают с конусными или цилиндрическими патрубками (рис. 2.25.).






Рис. 2.25. Кран со смазкой



Уплотнительная смазка выпрыскивается под давлением в зазор между уплотнительными поверхностями корпуса и пробки. Она продавливается через невозвратный клапан посредством винтовой пресс-масленки для консистентной смазки и достигает уплотнительных поверхностей через систему трубок или канавок в пробке и корпусе. Смазка устраняет негерметичность между пробкой и корпусом и защищает уплотнительные поверхности от коррозии и эрозии. Уплотнительные поверхности могут также покрываться фторопластом для обеспечения заданных технических характеристик.



Уравновешенные конусные краны

Давление среды в обычных конусных кранах в открытом положении может распространиться в полость под пробкой. При этих условиях результирующая сила будет действовать на пробку в сторону камеры, вызывая заклинивание крана. Уравновешенные конусные краны спроектированы так, чтобы использовать давление в трубопроводе для уравновешивания сил в кране (рис. 2.26.).






Рис. 2.26. Уравновешенный конический кран



Уравновешивающая система содержит два отверстия в пробке для соединения полостей над и под пробкой с давлением в системе. Через соединительную линию давление под малым торцом пробки уравновешивается возникающим усилием и предотвращает блокировку пробки, но необходимо регулярно подавать смазку для обеспечения полного поворота пробки.



Эксцентриковые краны

Эти краны используются во многих системах промышленных трубопроводов, включая системы водоподачи и отвода сточных вод, и способны изменять упругость пробки для обеспечения герметичного закрытия без использования уплотнительной смазки. Когда проход закрывается, уплотнительная поверхность пробки перемещается без трения об уплотнительную поверхность корпуса. Это устраняет заедание и износ, и краны используются на неочищенных сточных водах, воздухе, в водоснабжении, на газопроводах, мелкозернистых фракциях и всех других видах пульпы (рис 2.27.).













Рис. 2.27. Эксцентриковый кран



Футерованные краны

Для исключения высоколегированных сплавов и повышения стойкости к коррозии, краны могут изготавливаться из относительно недорого чугуна, при этом внутренние поверхности корпуса и пробки, полностью выполняются покрытыми тефлоном. Это делает краны применимыми на всех агрессивных средах с незначительными затратами (рис. 2.28.).






Рис. 2.28. Футерованный кран



Футеровка удерживается в канавках корпуса для ее фиксации и выполняется толщиной, обычно, 3 мм по всей площади для устойчивости к абразивному износу. Если футеровка повреждена, корпус подвергается коррозии.



Эти краны обычно используются в системах, где трубы футерованы, что оказывается много экономичнее, чем в системах трубопроводов из высоколегированных сплавов, и полностью пластмассовых, которые труднее обслуживать.



Преимуществами пробковых кранов являются: поворот на 90


между положениями «открыто» и «закрыто», защищенность уплотнительных поверхностей, простота монтажа в системе, минимальное гидравлическое сопротивление, простая и прочная конструкция, длительный срок службы. Пробковые краны являются арматурой с верхним разъемом, и пробка может быть введена в корпус без снятия крана с трубопровода.



Управление пробковыми кранами

Пробковые краны могут управляться вручную гаечным ключом, рукояткой, через редуктор или неполноповоротным приводом, приводимым в действие пневматикой, гидравликой или электричеством.










ШАРОВЫЕ КРАНЫ

В настоящее время шаровые краны, получившие развитие от традиционных кранов, укомплектованные новыми эластомерами и полимерными материалами для уплотнительных колец, стали полностью герметичными.



Другими характеристиками шаровых кранов являются минимальное гидравлическое сопротивление, низкий крутящий момент, поворот на 90


между положениями «закрыто» и «открыто», низкие эксплуатационные затраты, компактная конструкция и пожаробезопасное исполнение, предусматривающее закрытие крана в случае возникновения пожара на заводе.



Краны включают корпус, шаровую пробку, шток и уплотнительные кольца (рис 2.29.).










Рис 2.29. Шаровой кран



Существуют два базовых исполнения шаровых кранов – краны с плавающей пробкой, когда шар поддерживается уплотнительными кольцами, и краны с пробкой в опорах.



Последние более приемлемы для высоких давлений и больших диаметров (рис 2.30.).






Рис. 2.30. Шаровой кран с пробкой в опорах



Шаровые краны изготавливаются также с твёрдыми металлическими уплотнительными кольцами для использования на абразивных средах, при высоких температурах, в условиях дросселирования и огнестойкости.



Применяются четыре способа установки шара в корпус в обоих базовых исполнениях.

1. Корпус выполнен с одним или двумя разъёмами и состоит из двух или трёх частей, выполняющих функции фланцев. Корпусные детали соединены болтами, расположенными вокруг них. Эта конструкция называется кранами с корпусами из двух или трёх частей.

2. Шар и уплотнительные кольца вставляются через верхний разъём. Эта конструкция называется «кран с верхним разъёмом» (top entry valve).

3. Шар и уплотнительные кольца вставляются в корпус через разъём, расположенный перпендикулярно или под углом к оси трубопровода. Эта конструкция называется «кран с вертикальным или наклонным разъёмом» (end entry valve).

4. Корпус крана заварен и не имеет разъёмов. Ремонт этих кранов может выполняться только в оснащённых специальным оборудованием мастерских (рис. 2.31).






Рис. 2.31. Шаровой кран с заваренным корпусом



Краны с корпусами из двух или трёх частей имеют преимущество в простоте обслуживания и ремонта. Краны с верхним разъёмом обеспечивают условия для их обслуживания без демонтажа корпуса, что даёт им предпочтение с точки зрения безопасности и оперативности. Установка кранов исключает возможность протечек через разъёмы корпуса и их непроизвольного раскрытия при обслуживании.



Шаровые краны могут изготавливаться из проката, поковок или литья в исполнениях с одним, двумя или тремя разъёмами с резьбовыми или сварными встык или в раструб патрубками.



Шаровые краны с плавающей (поддерживаемой сёдлами) пробкой используются при низких давлениях и температурах. В кранах с пробкой в опорах нагрузка от перепада давления в закрытом положении воспринимается подшипниками опор, а не уплотнительными сёдлами. Это позволяет использовать их при существенно больших давлениях и температурах.



Шаровые краны могут изготавливаться полнопроходными или зауженными. В полнопроходных кранах диаметр проходного сечения соответствует внутреннему диаметру трубопровода. Максимальное заужение прохода (минимальное сечение) регламентировано, например, BS 5351 и приведено в табл. 2.2.



Таблица 2.2. Размеры зауженных проходов, дюймы








Материалы, обычно применяемые при изготовлении шаровых кранов, – углеродистая сталь 20Л или 25Л или сортовой прокат аналогичных марок для корпусных деталей и легированные стали марок 20Х13 и14Х17Н2 для пробок и штоков. Для применения на коррозионных или низкотемпературных средах корпуса и пробки кранов изготавливаются из нержавеющих сплавов.



Для уплотнительных колец и уплотнений по штоку используется чистый или наполненный фторопласт как химически стойкий, так и обладающий низким коэффициентом трения (менее 0,1). Однако, фторопласт теряет свои свойства при температурах выше 100 °С, а при температуре 230 °С его стойкость падает до 0. Это вынудило использовать графики зависимости рабочего давления от температуры для мягких уплотнений кранов. Указанная зависимость для чистого фторопласта регламентирована BS 5351 (рис. 2.32.)






Рис. 2.32. Зависимость рабочего давления в шаровых кранах

с уплотнениями из фторопласта от температуры

A -2"; B -3…4"; C -6…8"; D – 10…12"



Нейлоны, полиэстер – кетоны (РЕЕК), флубон, и другие модификации фторопласта, графитовые уплотнения, обычно терморасширенный графит, – используются для повышения стойкости при высоких давлениях и температурах.



Полностью футерованные шаровые краны, как и пробковые краны, изготавливаются для сильноагрессивных рабочих сред. Все соприкасающиеся со средой поверхности защищены фторуглеродным покрытием.



Шар может также быть полностью футерованным или изготовленным из твёрдой керамики. При этом он обеспечивает меньший крутящий момент по сравнению с футерованными пробковыми кранами. Как и в футерованных пробковых кранах, если покрытие будет повреждено, ресурс незащищённого металлического корпуса существенно снижается.



Шаровые краны с мягкими уплотнительными кольцами могут использоваться для регулирования только с малыми перепадами давления. В противном случае высокая скорость среды быстро разрушает уплотнительные кольца. При необходимости использования кранов для регулирования с большими перепадами давления и высокими скоростями рабочих сред применяются металлические уплотнительные кольца и твёрдые покрытия шаров.



Шаровые краны для низких температур

Шаровые краны широко используются для низких температур, включая криогенные, сжиженных природного и нефтяного газа, жидкого азота, кислорода. Это позволяет легко автоматизировать технологические процессы и расширять диапазон применения шаровых кранов.

Краны для низких температур до – 50 °С изготавливают из углеродистых, а для температур до –196 °С – из нержавеющих сталей.



Фторопластовые уплотнения при низких температурах становятся жёсткими, и это является причиной резкого увеличения крутящего момента.



Удлинённая крышка предохраняет уплотнительные кольца штока от действия криогенных температур и образования льда вокруг неё.



Особенностью испытаний таких кранов является необходимость проверки всех элементов на герметичность и работу с легковскипающими жидкостями, часто по требованию инжиниринговых компаний необходимыми являются криогенный тест, включая тест на «холодовой» шок, проводимый при захолаживании арматуры.



Шаровые краны для высоких температур

Максимальные температуры, при которых могут работать шаровые краны, определяются стойкостью к высоким температурам уплотнительных материалов.



Чистый фторопласт обладает высоким коэффициентом термического расширения. Для снижения этого коэффициента могут быть применены примеси силикона или графита.

Обычные материалы могут использоваться при температуре ниже 240 °С.

Для более высоких температур должны применяться другие материалы, например, терморасширенный графит, полиамид, РЕЕК или РЕS, которые могут повысить температурный предел до 350 °С.



Шаровые краны с металлическими уплотнениями становятся всё более популярными в применении как на абразивных средах, так и при высоких температурах вплоть до 1000 °С, вытесняя клиновые задвижки.



Использование шаровых кранов становится таким же широким и разнообразным, как разнообразны технологические процессы в промышленности. Оно распространяется от простых условий эксплуатации, таких как использование на воде, растворителях, кислотах и природном газе, до более трудных и опасных, таких как газообразный кислород, перекись водорода, метан и этилен.



Ограничения использования по температурным характеристикам и свойствам материалов уплотнений уменьшаются в результате исследований и появления новых материалов, что делает возможным расширение применения шаровых кранов в будущем.



Управление шаровыми кранами

Шаровые краны могут управляться вручную рукоятью или маховиком, через редуктор или неполноповоротным приводом, управляемым от электричества, гидравлики или пневматики.








Специальные исполнения:

для пыльных или абразивных сред, низких или высоких температур, ядерных установок, морских условий, применений на хлоре, кислороде, перекиси водорода, фторе, в табачной промышленности, при глубоком вакууме, большом количестве циклов, для космических целей.



ДИСКОВЫЕ ЗАТВОРЫ

Поворотный дисковый затвор состоит из диска, вращающегося на валу с полным углом поворота 90 градусов в корпусе, выполненном в форме трубы. В открытом положении диск устанавливается вдоль оси корпуса, создавая минимальное сопротивление потоку. В закрытом положении кромки диска соприкасаются с уплотнительными кольцами, которые могут располагаться в корпусе или на диске.



Дисковые затворы изготавливаются с размерами от 25 до 1800 мм (1“ – 72“). Они вставляются между фланцами трубопровода, стягиваемыми шпильками, что экономит пространство и массу. Такая конструкция известна как межфланцевая (вафельная) (рис. 2.33.).






Рис. 2.33. Межфланцевый дисковый поворотный затвор



Затворы бесфланцевого типа могут быть изготовлены с проушинами, в этом случае, при установке в качестве концевого затвора, второй фланец не требуется.



Затворы обычно применяются в объектах энергетики, пивоварении, водоснабжении и пищевой промышленности, где используются чистые среды. Обычно для корпусов затворов используется чугун, но применяются и другие материалы – углеродистая и нержавеющая стали, бронза и алюминий.



Диски также обычно выполняются из чугуна, но могут изготавливаться из углеродистой или нержавеющей стали или алюминиевой бронзы. Все изготовители стремятся сконструировать профиль диска гладким и обтекаемым, чтобы минимизировать гидравлические потери.



Изготавливаются полностью футерованные конструкции, когда корпус и диск покрыты фторопластом или резиной. Корпус разделён на две части, соединяемые под углом 90° для установки уплотнительного кольца, а вал и диск выполняются как одна деталь, с минимальным количеством неровностей, чтобы обеспечить хорошие гидравлические и гигиенические характеристики.



Уплотнительные кольца также выполняются разными у многих компаний, но всегда изготавливаются из химически стойких эластичных материалов, например, химстойкой резины, нитрила или фторопласта.



Затворы отличаются герметичностью, малыми утечками, и/или возможностью регулировать потоки. Компактная конструкция и девяностоградусный (четвертьповоротный) цикл работы делают их привлекательными как для ручного, так и для приводного управления.



Некоторые из характеристик, которые определяют популярность дисковых затворов:

1) Лёгкость управления;

2) Отсутствие трущихся частей;

3) Низкие гидравлические потери;

4) Низкий вес и стоимость по сравнению с другими видами арматуры;

5) Ход в четверть оборота.



Управление

Для управления дисковыми затворами используются все виды управления – ручное рычагом или маховиком, через редуктор, электрический, пневматический или гидравлический привод в зависимости от размеров или проекта установки.










Дисковые затворы с эксцентрично установленными дисками

Дисковые затворы с эксцентрично установленными дисками используются для тяжёлых условий работы и являются усовершенствованной модификацией обычных конструкций. Такое расположение диска создаёт ему более благоприятные условия взаимодействия с уплотнительными кольцами. Их конструкция может быть уподоблена шаровым кранам, в которых используется часть сферы, контактирующей с уплотнительными кольцами только на нескольких последних градусах закрытия. Это обеспечивает улучшенную герметичность, даёт возможность осуществлять дросселирование, полностью отвечать требованиям к арматуре с PN 2…10 МПа, а конструкция является пожаробезопасной.



В более совершенной конструкции вал диска расположен с двойным эксцентриситетом относительно оси затвора. Он установлен вне диска и смещён относительно оси трубопровода. Уплотнительные кромки диска контактируют с кольцами при закрывании и открывании затвора практически без проскальзывания, то есть без трения.





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/stanislav-lvovich-go/kurs-truboprovodnaya-armatura-modul-kratkiy-kurs-dlya/) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



Курс "Трубопроводная арматура. Краткий курс для менеджеров" дает основные положения по трубопроводной арматуре, представленные в сжатой форме. В курсе рассматриваются основные сведения по терминологии, базовым конструкциям, видам испытаний и стандартам арматуры. В разделе Трубопроводная арматура кратко рассматриваются основные типы арматуры с возвратно-поступательным движением и поступательным движением штока, и виды арматуры по применению от регулирующей и запорной и до конденсатоотводчиков. Представлены основные положения по приводам арматуры и приборам управления, особенностям эксплуатации арматуры, ее монтажу и техническому обслуживанию, а также особенностям ее закупки, история и перспективы ее развития в будущем. Курс предназначен для ознакомления с основными положениями об арматуре и может быть использован для обучения персонала, и полезен для специалистов и руководителей по маркетингу и сбыту трубопроводной арматуры и приводов.

Как скачать книгу - "Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров" в fb2, ePub, txt и других форматах?

  1. Нажмите на кнопку "полная версия" справа от обложки книги на версии сайта для ПК или под обложкой на мобюильной версии сайта
    Полная версия книги
  2. Купите книгу на литресе по кнопке со скриншота
    Пример кнопки для покупки книги
    Если книга "Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров" доступна в бесплатно то будет вот такая кнопка
    Пример кнопки, если книга бесплатная
  3. Выполните вход в личный кабинет на сайте ЛитРес с вашим логином и паролем.
  4. В правом верхнем углу сайта нажмите «Мои книги» и перейдите в подраздел «Мои».
  5. Нажмите на обложку книги -"Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров", чтобы скачать книгу для телефона или на ПК.
    Аудиокнига - «Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров»
  6. В разделе «Скачать в виде файла» нажмите на нужный вам формат файла:

    Для чтения на телефоне подойдут следующие форматы (при клике на формат вы можете сразу скачать бесплатно фрагмент книги "Курс Трубопроводная арматура. Модуль Краткий курс для менеджеров" для ознакомления):

    • FB2 - Для телефонов, планшетов на Android, электронных книг (кроме Kindle) и других программ
    • EPUB - подходит для устройств на ios (iPhone, iPad, Mac) и большинства приложений для чтения

    Для чтения на компьютере подходят форматы:

    • TXT - можно открыть на любом компьютере в текстовом редакторе
    • RTF - также можно открыть на любом ПК
    • A4 PDF - открывается в программе Adobe Reader

    Другие форматы:

    • MOBI - подходит для электронных книг Kindle и Android-приложений
    • IOS.EPUB - идеально подойдет для iPhone и iPad
    • A6 PDF - оптимизирован и подойдет для смартфонов
    • FB3 - более развитый формат FB2

  7. Сохраните файл на свой компьютер или телефоне.

Видео по теме - Разработка раздела ТХ: от схем P&ID до получения ISO-чертежей

Книги автора

Рекомендуем

Последние отзывы
Оставьте отзыв к любой книге и его увидят десятки тысяч людей!
  • константин александрович обрезанов:
    3★
    21.08.2023
  • константин александрович обрезанов:
    3.1★
    11.08.2023
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *