Книга - Коронавирус: всё что нужно знать

a
A

Коронавирус: всё что нужно знать
Александр Иванович Бубнов


Коронавирус SARS-CoV-2, вызвавший пандемию пневмонии COVID-19, стал настоящим испытанием для всех стран мира. Информации о нем было крайне недостаточно. В данной книге собраны все сведения о семействе коронавирусов, в том числе о SARS-CoV-2 и его мутациях, подробно описаны этапы заражения, течения болезни, схемы медикаментозного лечения, диета, даны рекомендации по устранению постковидных синдромов и обработке помещения. Также в книге рассмотрены социально-экономические меры по преодолению кризисных явлений ввиду пандемии в различных странах мира, представлен прогноз развития эпидемической ситуации, в том числе дана оценка вероятности новых пандемий. Администрация сайта ЛитРес не несет ответственности за представленную информацию. Могут иметься медицинские противопоказания, необходима консультация специалиста.





Александр Бубнов

Коронавирус: всё что нужно знать





1. Общие сведения о вирусах


Вирус (лат. virus – «яд») – неклеточный инфекционный агент, который может воспроизводиться только внутри клеток. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, способные реплицироваться только в присутствии других вирусов (вирусы-сателлиты).

Со времени публикации в 1892 году статьи Дмитрия Ивановского, описывающей небактериальный патоген растений табака, и открытия в 1898 году Мартином Бейринком вируса табачной мозаики были детально описаны более 6 тысяч видов вирусов, хотя предполагают, что их существует более ста миллионов. Вирусы обнаружены почти в каждой экосистемена Земле. Они являются самой многочисленной биологической формой. Изучением вирусов занимается наука вирусология, раздел микробиологии.

У животных вирусные инфекции вызывают иммуный ответ, который чаще всего приводит к уничтожению болезнетворного вируса. Иммунный ответ также можно вызвать вацинами, дающими активный приобретённый иммунитет против конкретной вирусной инфекции. Однако некоторым вирусам, в том числе вирусу иммунодефицита человека и возбудителям вирусных гепатитов, удаётся ускользнуть от иммунного ответа, вызывая хроническую болезнь. Антибиотики не действуют на вирусы, однако было разработано несколько проивовирусных препаратов.

Пока вирус находится во внеклеточной среде или в процессе заражения клетки, он существует в виде независимой частицы.

Вирусные частицы (вирионы) состоят из двух или трёх компонентов:

– генетического материала в виде ДНК и/или РНК;

– белковой оболочки (капсида), защищающей эти молекулы,

– в некоторых случаях, – дополнительных липидных оболочек.

Наличие капсида отличает вирусы от вирусоподобных инфекционных нуклеиновых кислот – вироидов.

Форма вирусов варьирует от простой спиральной и икосаэдрической до более сложных структур. Размеры среднего вируса составляют около одной сотой размеров средней бактерии.

В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусыи РНК-содержащие вирусы. На этом принципе основана классификация вирусов по Балтимору, которая предполагает разделение на 7 групп:

1 группа. Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы) аденовирусы, миммивирус).

2 группа. Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности.

3 группа. Вирусы, содержащие двуцепочечную РНК (например, ротавирусы, норовирус).

4 группа. Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы, коронавирусы).

5 группа. Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).

6 группа. Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, вирус иммунодефицита человека).

7 группа. Вирусы, содержащие частично двуцепочечную, частично одноцепочечную ДНК  и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

Вирусы являются облигатными паразитами, так как не способны размножаться вне клетки. Вне клетки вирусные частицы не проявляют признаки живого и ведут себя как частицы биополимеров. От живых паразитарных организмов вирусы отличаются полным отсутствием основного и энергетического обмена и отсутствием сложнейшего элемента живых систем – аппарата трансляции (синтеза белка), степень сложности которого превышает таковую самих вирусов.

Вирусы похожи на живые организмы в том, что они имеют свой набор генов и эволюционируют путём естественного отбора, а также в том, что способны размножаться, создавая собственные копии путём самосборки. Вирусы имеют генетический материал, однако лишены клеточного строения. У вирусов нет собственного обмена веществ и для синтеза собственных молекул им необходима клетка-хозяин.

Условно жизненный цикл вируса можно разбить на несколько взаимоперекрывающихся этапов (обычно выделяют 6 этапов):

1 этап. Прикрепление.

Прикрепление представляет собой образование специфичной связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина. Это специфичное связывание определяет круг хозяев вируса. Например, ВИЧ поражает только определённый тип человеческих лейкоцитов. Это связано с тем, что оболочечный гликопротеин вируса gp120 специфично связывается с молекулой CD4 – хемокиновым рецептором, который обычно встречается на поверхности CD4+ T-лимфоцитов. Этот механизм обеспечивает инфицирование вирусом только тех клеток, которые способны осуществить его репликацию. Связывание с рецептором может вызвать конформационные изменения белка оболочки (или белка капсида в случае безоболочечного вируса), что в свою очередь служит сигналом к слиянию вирусной и клеточной мембран и проникновению вируса в клетку.

2 этап. Проникновение в клетку.

На следующем этапе вирусу необходимо доставить внутрь клетки свой генетический материал. Некоторые вирусы также переносят внутрь клетки собственные белки, необходимые для её реализации (особенно это характерно для вирусов, содержащих негативные РНК). Различные вирусы для проникновения в клетку используют разные стратегии: например, пикорнавирусы впрыскивают свою РНК через плазматическую мембрану, а вирионы ортомиксовирусов захватываются клеткой в ходе эндоцитоза и попадают в кислую среду лизосом, где происходит депротеинизация вирусной частицы, после чего РНК в комплексе с вирусными белками преодолевает лизосомальную мембрану и попадает в цитоплазму. Вирусы также различают по тому, где происходит их репликация: часть вирусов (например, те же пикорнавирусы) размножается в цитоплазме клетки, а часть (например, ортомиксовирусы) в её ядре. Процесс инфицирования вирусами клеток грибов и растений отличается от инфицирования клеток животных. Растения имеют прочную клеточную стенку, состоящую из целлюлозы, а грибы – из хитина, так что большинство вирусов могут проникнуть в них только после повреждения клеточной стенки. Однако почти все вирусы растений (включая вирус табачной мозаики) могут перемещаться из клетки в клетку в форме одноцепочечных нуклеопротеиновых комплексов через плазмодесмы. Бактерии, как и растения, имеют крепкую клеточную стенку, которую вирусу, чтобы попасть внутрь, приходится повредить. Но в связи с тем, что клеточная стенка бактерий намного тоньше таковой у растений, некоторые вирусы выработали механизм впрыскивания генома в бактериальную клетку через толщу клеточной стенки, при котором капсид остаётся снаружи.

3 этап. Лишение оболочек.

Данный этап  представляет собой процесс потери капсида. Это достигается при помощи вирусных ферментов или ферментов клетки-хозяина, а может быть и результатом простой диссоциации. В конечном счёте вирусная геномная нуклеиновая кислота освобождается.

4 этап. Репликация вирусов.

Репликация вируса включает синтез мРНК ранних генов вируса (с исключениями для вирусов, содержащих положительную РНК), синтез вирусных белков, возможно, сборку сложных белков и репликацию вирусного генома, которая запускается после активации ранних или регуляторных генов. Вслед за этим может последовать (у комплексных вирусов с крупными геномами) ещё один или несколько кругов дополнительного синтеза мРНК: «поздняя» экспрессия генов приводит к синтезу структурных или вирионных белков.

5 этап. Сборка вирусных частиц.

Сразу за репликацией происходит сборка вирусных частиц, позже происходят некоторые модификации белков. У вирусов, таких как ВИЧ, такая модификация (иногда называемая созреванием) происходит после выхода вируса из клетки-хозяина.

6 этап. Выход из клетки.

Вирусы могут покинуть клетку после лизиса, процесса, в ходе которого клетка погибает из-за разрыва мембраны и клеточной стенки, если такая есть. Эта особенность есть у многих бактериальных и некоторых животных вирусов. Некоторые вирусы подвергаются лизогенному циклу, где вирусный геном включается путём генетической рекомбинации в специальное место хромосомы клетки-хозяйки. Тогда вирусный геном называется провирусом, или, в случае бактериофага, профагом. Когда клетка делится, вирусный геном также удваивается. В пределах клетки вирус в основном не проявляет себя; однако в некоторый момент провирус или профаг может вызвать активацию вируса, который может вызвать лизис клеток-хозяев.

Следует отметить, что активно размножающийся вирус не всегда убивает клетку-хозяина. Оболочечные вирусы, в том числе ВИЧ, обычно отделяются от клетки путём отпочковывания. В ходе этого процесса вирус обзаводится своей оболочкой, которая представляет собой модифицированный фрагмент клеточной мембраны хозяина или другой внутренней мембраны. Таким образом, клетка может продолжать жить и продуцировать вирус.




2.Семейство коронавирусов





2.1.Общие сведения


Коронавирусы  (лат. Coronaviridae) – семейство вирусов, включающее на май 2020 года 43 вида РНК-содержащих вирусов, объединённых в два подсемейства, которые поражают млекопитающих (включая человека), птиц и земноводных. Название связано со строением вируса, шповидные отростки которого напоминают солнечную корону.

Возможные механизмы передачи: воздушно-капельный, воздушно-пылевой, фекально-оральный, контактный. Заболеваемость растёт зимой и ранней весной. В структуре ОРВИ госпитализированных больных коронавирусная инфекция составляет в среднем 12 %. О широкой распространённости коронавирусов свидетельствуют специфичные антитела, выявленные у 80 % людей.

Геном представлен одноцепочечной (+) РНК. Нуклеокапсид окружён белковой мембраной и липосодержащей внешней оболочкой, от которой отходят булавовидные шиповидные отростки, напоминающие корону, за что семейство и получило своё название. Культивируют на культуре тканей эмбриона человека. 2019-nCoV использует S-белок на короне для прикрепления к своему рецептору – ангиотензинпревращающему ферменту 2 (АСЕ2), а также к сериновой протеазе TMPRSS2, как и вирус SARS-CoV (атипичной пневмонии). Клетка окутывает вирус своей мембраной, и образовавшийся мембранный пузырёк оказывается в цитоплазме клетки. Два упомянутых белка-рецептора клетки трансформируют S-белок вируса таким образом, что мембраны вируса и клетки сливаются.

После проникновения в клетку вирус с помощью внутриклеточных мембран создаёт мембранные пузырьки, к которым прикрепляются специальные белковые комплексы. В этих комплексах синтезируется копия геномной РНК вируса и короткие мРНК для синтеза белков вируса.

РНК вируса имеет 5'-метилированное начало и 3'– полиаденилированное окончание. Это позволяет вирусу инициировать на своих РНК сборки своих белков рибосомами клетки, которая не в состоянии определить, это РНК вируса или РНК для белков самой клетки.

Коронавирусы имеют РНК около 26–30 тысяч пар оснований, это означает, что коронавирусы обладают крупнейшей несегментированной РНК среди всех известных вирусов, то есть являются сложнейшими по структуре среди известных вирусов. Геном вируса состоит из более чем 20 000 нуклеотидов и кодирует два репликативных полипротеина pp1a и pp1ab, из которых в следующий проход репликации/трансляции формируется копия РНК вируса, а также 8 отдельных мРНК-шаблонов для белков вирусов, которые бесконечно их генерируют. Генерация белков M, S, HE и E, попадающих в мембранную липидную оболочку вируса, происходит на соответствующих мРНК в эндоплазматическом ретикулуме клетки; белок же N, который будет окружать геномную РНК вируса, синтезируется на мРНК, плавающих в цитоплазме клетки.

После получения геномной РНК вируса и необходимых его белков эта РНК, окутанная белком N, приближается к сидящим на эндоплазматическом ретикулуме белкам и взаимодействует с ними. В результате мембрана эндоплазматического ретикулума с находящимися в ней вирусными белками охватывает эту РНК, формируя вирион. Вирионы затем высвобождаются из инфицированной клетки через экзоцитоз. После выхода вирионов из клетки она погибает.

Следует отметить, что медикаментозная терапия при не осложненном течении коронавирусной инфекции в некоторых случаях обходится симптоматическим лечением и направлено на поддержание здоровья организма и купировании тяжелых клинических проявлений.

В целом же, схема лечения и подбор лекарственных препаратов проводится на основании диагностики и сильно зависит от рода и штамма коронавируса, наличия вторичных болезней, локализации воспалительного процесса и клинических проявлений.

В настоящее время известно 7 коронавирусов, поражающих человека:

– коронавирус человека 229E (HCoV-229E) – Alphacoronavirus;

– коронавирус человека NL63 (HCoV-NL63) – Alphacoronavirus;

– коронавирус человека OC43 (НСоV-OC43) – Betacoronavirus A;

– коронавирус человека HKU1 (HCoV-HKU1) – Betacoronavirus A;

– атипичная пневмония (SARS-CoV) – Betacoronavirus  B;

– ближневосточный респираторный синдром  (MERS-CoV) – Betacoronavirus C;

– коронавирус SARS-CoV-2 – Betacoronavirus B, выявленный во второй половине 2019 года, вызвавший пандемию пневмонии нового типа СЩМШВ-19.

Рассмотрим каждый из этих видов коронавирусов подробнее.




2.2. Коронавирус человека 229E


Коронавирус человека 229E (HCoV-229E) – Alphacoronavirus, впервые выявлен в середине 1960-х годов. HCoV-229E поражает летучих мышей и людей, передаётся воздушно-капельным и контакто-бытовым путями. Может протекать как в форме ОРВИ, так и в тяжёлых формах заболевания, включая пневмонию и бронхиолит. Вирус также входит в число коронавирусов, наиболее часто обнаруживаемых вместе с другими респираторными вирусами, особенно с респираторно-синцитиальным вирусом человека (HRSV), который является основной причиной инфекций нижних дыхательных путей. У большинства людей HRSV вызывает лишь слабые симптомы, часто неотличимые от других респираторных заболеваний. Тяжелые инфекции HRSV значительно чаще встречаются среди пожилых людей.

Лечение HRSV:

Многие доктора придерживаются мнения, что в лечении бронхиолита, вызванного респираторно-синцитиальным вирусом у новорожденных, не помогает ничего, кроме кислорода, а  адреналин, бронходилататоры, стероиды и рибавирин не дают никакой реальной пользы. Лечение заключается в поддерживающей терапии, рекомендовано обильное питье и подача кислорода через маску. В случае спазмов бронхов назначают альбутерол. Для уменьшения усилий, необходимых для дыхания, через носовые канюли подают увеличенный поток увлажненного воздуха. Также показано, что гипертонический 3%-ный солевой раствор, подаваемый с ингаляциями, является недорогим и эффективным способом лечения новорожденных, госпитализированных с вирусным бронхиолитом средней тяжести, например, в случае вирусного бронхиолита.




2.3. Коронавирус человека NL63


Коронавирус человека NL63 (HCoV-NL63) – Alphacoronavirus, возбудитель был выявлен в Нидерландах в 2004 году у семимесячного ребенка с бронхиолитом. Вирус происходит от зараженных пальмовых цивет и летучих мышей. Среди людей вирус обнаруживается у детей младшего возраста, пожилых людей и пациентов с ослабленным иммунитетом с острыми респираторными заболеваниями. Считается, что путь распространения HCoV-NL63 лежит через прямую передачу от человека к человеку в густонаселенных районах. Вирус может выживать до недели вне организма в водных растворах при комнатной температуре и три часа на сухих поверхностях.

Вирус представляет собой (+) одноцепочечный РНК-вирус, который поступает в клетку-хозяина через рецептор ACE2.

Заражение вирусом было подтверждено во всем мире и имеет связь со многими общими симптомами и заболеваниями. Наиболее распространенными симптомами являются лихорадка, кашель, ринит, боль в горле, хрипота, бронхит, бронхиолит, пневмония и круп.

Трудно провести различие между симптомами, вызванными инфекцией вируса HCoV-NL63, и симптомами, вызванными другими распространенными вирусами человека, что затрудняет диагностику и обнаружение. Обратная транскрипционная полимеразная цепная реакция образцов, взятых через носоглоточный мазок, является наиболее часто используемым методом обнаружения вируса. Вирусная культура или анализ сыворотки крови на антитела также могут быть использованы для подтверждения инфекции.

Центры по контролю и профилактике заболеваний США рекомендуют несколько мер для предотвращения заражения HCoV-NL63, включая: часто мыть руки с мылом и водой, избегать тесного контакта с больными людьми и не касаться глаз, рта или нос.

Лечение HCoV-NL63:

Зависит от тяжести ассоциированной симптоматики. Большинство легких и умеренных инфекций исчезнет само по себе. Симптомы можно облегчить, принимая обезболивающее или жаропонижающее, горячий душ или увлажнитель. Противовирусное лечение может быть необходимо для инфицированных пациентов, которые попадают в отделение интенсивной терапии (ОИТ) из-за острой респираторной инфекции. Внутривенный иммуноглобулин является одобренным FDA ингибитором HCoV-NL63, который также используется для лечения первичного иммунодефицита, RSV и болезни Кавасаки. Последние данные предполагают связь инфекции HCoV-NL63 с болезнью Кавасаки, системным васкулитом в детстве, который может привести к аневризму коронарных артерий. В развитых странах болезнь Кавасаки является наиболее распространенной причиной приобретенных пороков сердца у детей. Вирус использует тот же клеточный рецептор, что и SARS-CoV (ACE2). HCoV-NL63 также был обнаружен в кишечном тракте инфицированных людей и связан с гастроэнтеритом. Этот тип инфекции является прямым результатом вирусной инвазии слизистой оболочки кишечника.




2.4.Коронавирус человека OC43


Коронавирус человека OC43 (HCoV-OC43) – Betacoronavirus A, возбудитель выявлен в 1967 году. Поражает людей и крупный рогатый скот. OC43 – один из семи известных коронавирусов, заражающих людей, ответственный за примерно 10-15 % случаев ОРВИ.

Оболочечный (+) одноцепочечный РНК-вирус, который проникает в клетку, связываясь с рецептором N-ацетил-9-О-ацетилнейраминовой кислоты. Имеет, как и другие коронавирусы из подрода Embecovirus, короткий белок-шип, так называемую гемагглютинин-эстеразу (НЕ).

Идентифицированы четыре генотипа HCoV-OC43 (от A до D) с генотипом D, скорее всего возникшим в результате генетическойрекомбинации. Полное севенирование генома двух штаммов генотипов C и D и бутскан-анализ показывают признаки рекомбинации между генотипами B и C при образовании генотипа D. Из 29 идентифицированных штаммов ни один не принадлежит к более древнему генотипу A. Метод молекулярных часов с использованием шипа и нуклеокапсида относит ближайшего общего предка всех генотипов к 1950-м годам, генотип B к 1990-м годам и генотип C к концу 1990-х – началу 2000-х годов. Рекомбинантные штаммы генотипа D были обнаружены уже в 2004 году.

Сравнение HCoV-OC43 с ближайшим к нему штаммом рода Betacoronavirus 1, коронавирусом КРС, показало, что у них был ближайший общий предок в конце XIX века, при этом несколько методов датируют разделение примерно 1890 годом, что заставило исследователей предположить, что попадание первого штамма в человеческое население вызвало пандемию гриппа 1889-1890 годов. HCoV-OC43, вероятно, зародился у грызунов.

Наряду с HCoV-229E, видом из рода Alphacoronavirus, HCoV-OC43 входит в число известных вирусов, вызывающих простуду. Оба вируса могут вызывать тяжелые инфекции нижних дыхательных путей, включая пневмонию у младенцев, пожилых людей и лиц с ослабленным иммунитетом, например, тех, кто проходит химиотерапию, и людей с  ВИЧ/СПИДом.

Обыденность вируса в течение длительного времени не привлекала к нему внимания исследователей: подобно 229Е, он был «вирусом-сиротой», не имевшим в отличие от SARS и MERS даже «затейливого» названия. Однако, предположения о его связи с пандемией «русского гриппа» 1889-1890 годов – основанное на вышеописанном исследовании генома и сходству симптомов поражения нервной системы – возможно, свидетельствует о существенном и сравнительно быстром ослаблении патогенности коронавируса.

Вообще в настоящее время штаммами, круглогодично приводящим к заболеваниям по типу нетяжёлого ОРВИ являются коронавирусы HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1.




2.5.Коронавирус человека HKU1


Коронавирус человека HKU1 (HCoV-HKU1) – Betacoronavirus A, возбудитель обнаружен в Гонконге в 2005 году, последующие исследования показали, что он имеет глобальное распространение и более ранний генез. Вирус вызывает заболевание верхних дыхательных путей с симптомами обычной простуды, но может прогрессировать до пневмонии и бронхиолита. Он был впервые обнаружен в январе 2004 года у одного человека в Гонконге.

Вирус представляет собой оболочечный (+) одноцепочечный РНК-вирус, который проникает в клетку-хозяина, связываясь с рецептором. Он имеет ген гемагглютининовой эстеразы (HE), который отличает его как члена рода Betacoronavirus и подрода Embecovirus. Филогенетический анализ показал, что HKU1 наиболее тесно связан с вирусом гепатита мыши (MHV) и отличается в этом отношении от других известных бетакоронавирусов человека , таких как HCoV-OC43. При анализе генов РНК-зависимой РНК-полимеразы (RdRp), Спайка (S) и нуклеокапсида (N) были обнаружены несовместимые филогенетические связи. Полное секвенирование генома 22 штаммов HCoV-HKU1 подтвердило, что это произошло в результате естественной рекомбинации.HCoV-HKU1, вероятно, возник у грызунов.

Структуры спайков HCoV-HKU1 и белков HE были разрешены Cyro-EM в 2016 и 2020 годах соответственно. Белок S (PDB: 5108) был отмечен своим большим размером. Белок HE (PDB: 6Y3Y) отличается от обычных (например, в OC43) тем, что имеет гораздо меньший рудиментарный лектиновый домен. Этот домен защищен от распознавания иммунной системой посредством изменения размера и гликозилирования.

Прослеживающий анализ отрицательных носоглоточных аспиратов SARS от пациентов с респираторными заболеваниями в период ОРВИ в 2003 году выявил наличие РНК CoV-HKU1 в образце от 35-летней женщины с пневмонией. Первые известные случаи заболевания в Западном полушарии были обнаружены в 2005 году после анализа более старых образцов клиническими вирусологами в больнице Йель-Нью-Хейвен в Нью-Хейвене, которым было любопытно узнать, находится ли HCoV-HKU1 в их районе. Они провели исследование образцов, собранных в 7-недельный период (декабрь 2001 – февраль 2002 года) у 851 младенца и ребенка. У 9 детей обнаружен человеческий коронавирус HKU1. У этих детей были инфекции дыхательных путей во время сбора образцов (у одной девочки настолько тяжелые, что потребовалась искусственная вентиляция легких). Исследователи сообщили, что штаммы, выявленные в Нью-Хейвене, были похожи на штамм, обнаруженный в Гонконге, и предполагали всемирное распространение.




2.6.Атипичная пневмония


Атипичная пневмония (SARS-CoV) – Betacoronavirus  B, возбудитель тяжёлого острого респираторного синдрома (ТОРС), первый случай заболевания которым был зарегистрирован в 2002 году в южном Китае, провинция Гуандун. Заражение в течение 2 месяцев распространилось на соседние Гонконг и Вьетнам, а в конце февраля 2003 года и далее – на другие страны и континенты. Случаи заболевания обнаруживались в 29 странах, всего было отмечено 8273 случаев, из которых 775 закончились смертельным исходом (летальность 9,6 %). Последний случай заболевания ТОРС был зафиксирован в июле 2003 года на Тайване. Эпидемия была остановлена мерами контроля по распространению инфекции.

Заболевание было вызвано коронавирусом SARS-CoV, представляющим из себя одноцепочечный положительный РНК-вирус с наличием оболочки. Считается, что изначальным источником вируса SARS-CoV были подковоносные летучие мыши, а к людям перешёл через гималайских цивет. Исследование длительностью в 5 лет выявило, что все составные части генома SARS-CoV присутствуют у ТОРС-подобных коронавирусов, циркулирующих среди подковоносных летучих мышей в одной из пещер китайской провинции Юньнань. Есть вероятность, что вирус SARS-CoV появился в результате рекомбинации генов между данными вирусами.

Несмотря на принятие некоторых, не слишком успешных, мер по борьбе с распространением заболевания, китайские правительственные должностные лица решили не информировать Всемирную организацию здравоохранения о резком росте количества инфицированных жителей и до февраля 2003 года ограничивали освещение средствами массовой информации фактов обнаружения и распространения данного заболевания в целях сохранения доверия общественности к способности властей быстро справиться с проблемой.

Доктор Карло Урбани быстро выявил, что возбудитель инфекционного заболевания является атипичным и крайне опасным. Он и его коллеги добились введения жёстких карантинных мер, направленных на оперативную локализацию инфекционного заболевания. Они смогли убедить правительство Вьетнама в срочной необходимости введения всеобщего карантина, хотя это и создавало серьёзные экономические трудности для страны.

Если сравнить эпидемию атипичной пневмонии (ТОРС) во Вьетнаме и соседними с ним государствами, такими как Китай, Гонгконг, Сингапур и другие, то Вьетнам явился первой страной, в которой ВОЗ приостановила карантин.

Вьетнамская группа медицинских работников пополнилась специалистами из интернациональных групп врачей, у которых был опыт работы с вирусом Эбола, то есть в эпидемиологическом и клиническом исследовании приняли участие наиболее квалифицированные специалисты, имевшие опыт работы с инфекционными заболеваниями, для которых характерна высокая контагиозность.

По данным ВОЗ, метод борьбы с эпидемией ТОРС, который разработал микробиолог Карло Урбани в 2003 году, до сих пор представляет собой актуальный международный протокол по борьбе с этим типом заболевания.

Заболевание характеризуется вирусной пневмонией, быстро прогрессирующей до дыхательной недостаточности. Смертность была намного выше у пациентов старше 50 лет, достигая уровня летальности, приближающегося к 50 % для этой подгруппы пациентов.

Для заболевания характерны следующие симптомы:

– лихорадка (температура тела 38°С или выше, озноб);

– головная боль;

– общее недомогание;

– мышечные боли;

– сухой, непродуктивный кашель.

Типичной особенностью ТОРС является отсутствие чихания и насморка – симптомов простуды. ТОРС начинается с лихорадки, которая обычно возникает через 2-7 дней после инфицирования, но в то же время симптомы заболевания могут отсутствовать на протяжении 10 дней. Часто возникают озноб, головная и мышечные боли, общее чувство дискомфорта. По прошествии 2-7 дней с начала заболевания появляется сухой кашель. Иногда ТОРС прогрессирует в тяжёлую пневмонию, приводящую к дыхательной недостаточности и развитию гипоксемии.

Пациент является наиболее контагиозным (заразным) при развитии симптомов заболевания. До сих пор непонятно, возможно ли инфицирование других людей до появления клинических симптомов заболевания (в период продрома) или же после их исчезновения. В качестве профилактики CDC рекомендует выздоровевшим людям воздержаться от посещения общественных мест в течение 10 дней после исчезновения симптомов.

Примерно у 25 % пациентов болезнь протекала тяжело и прогрессировала в острый респираторный дистресс-синдром. Чаще всего это происходило у людей возрастом за 50 лет либо при наличии хронических заболеваний, включая диабет, хронический гепатит и заболевания сердца. Иммунный ответ организма, вероятно, также вносил свой вклад в тяжесть заболевания, косвенно на это указывает ухудшение состояния некоторых больных на второй неделе болезни на фоне снижения количества вируса в организме.

Общая летальность оценивается в 9-12 %.

Частой среди пациентов была лимфопения при нормальном или немного сниженном количестве нейтрофилов в крови. Лимфопения может служить маркером течения заболевания.

В других случаях с тяжёлым течением заболевания и смертельным исходом связана нейтрофилия и тромбоцитопения. При этом нейтрофилия ассоциировалась с бактериальной инфекцией, большая часть которой была внутрибольничной и проявлялась в виде пневмонии или сепсиса. Возможно, бактериальная инфекция была результатом применения кортикостероидов.

С учётом известных путей передачи ТОРС были разработаны перечни ограничительных мер для медицинских и общественных учреждений. Это предполагает соблюдение определённых ограничительных мер в отношении пациентов с подозрением на ТОРС или подтверждённом диагнозе ТОРС:

1) стандартные меры предосторожности (гигиена рук);

2) меры предосторожности при непосредственном контакте (использование халатов, защитных очков, перчаток);

3) меры по ограничению воздушно-капельного распространения инфекции (отрицательное давление в комнатах, где находятся пациенты, использование одноразовых респираторов N 95).

С 2004 г. новых случаев атипичной пневмонии, вызванной SARS-CoV, в мире не зарегистрировано.

Лечение:

Лечение ТОРС было эмпирическим, большинству пациентов назначали кортикостероиды и рибавирин. На текущий момент известно, что рибавирин оказывал слабый эффект против вируса, а из его побочных эффектов отмечалась обратимая гемолитическая анемия, которая проходила по окончании курса лечения. У 60 % больных, принимавших рибавирин, был снижен уровень гемоглобина в крови, в общем же случае при применении рибавирина рекомендован мониторинг уровня гемоглобина. Несмотря на побочные эффекты, препарат хорошо переносился больными.

Кортикостероиды, вероятно, причиняли в большей степени вред. Среди части пациентов применялись лопинавир и ритонавир и внутривенные иммуноглобулины, однако нет чётких доказательств их пользы или вреда. Также известны единичные сообщения о пользе интерферона альфа и интерферона бета.

Ни одна из терапий не доказала свою эффективность.

При нарастании явлений дыхательной недостаточности пациент переводился на искусственную вентиляцию легких.

Ретроспективный анализ различных исследований показал, что нейтрофилия может указывать на бактериальную инфекцию, в случае чего могут применяться антибиотики широкого спектра действия.

В 2004 г. в культуре клеток и на модели сирийских хомяков были получены данные об активности препарата Арбидол (Умифеновир) в отношении коронавируса – возбудителя атипичной пневмонии (ТОРС). Препарат рекомендуется применять 4 раза в сутки по 200 мг каждые 6 часов (суточная доза 800 мг).




2.7.Ближневосточный респираторный синдром


Ближневосточный респираторный синдром  (MERS-CoV) – Betacoronavirus C, возбудитель ближневосточного респираторного синдрома, вспышка которого произошла в 2015 году.

Вирус MERS-CoV является зоонозным (заражение от зверей), предположительно, природным резервуаром вируса являются популяции летучих мышей. Ряд исследований выявили наличие антител к коронавирусу MERS-CoV у верблюдов. Передача вируса от человека к человеку происходит при тесном контакте с заражённым.

Первые случаи заболевания новым вирусом регистрировались в Саудовской Аравии в начале осени 2012 года. Из более 50 зарегистрированных к июню 2013 года случаев заболевания MERS примерно половина имела летальный исход. К лету 2015 года случаи заболевания зафиксированы в 23 странах, включая Саудовскую Аравию, Йемен, ОАЭ, Францию, Германию, Италию, Грецию, Тунис, Египет, Малайзию, Таиланд, Южную Корею и другие. На 1 июня 2015 года зарегистрировано 1154 подтверждённых случая заболевания и не менее 431 летального исхода, связанного с заражением коронавирусом.

По состоянию на конец 2019 – начало 2020 годов в мире всего зарегистрировано от 2494 до 2506 случаев заболевания, умерли от 862 до 912 человек. Каждый год продолжают регистрироваться случаи заболевания, вызванные MERS-CoV: от единичных случаев до десятков.

Клиническая картина характерна для острого респираторного вирусного заболевания: первыми симптомами являются лихорадка, кашель, одышка, по мере развития заболевание переходит в форму тяжёлой вирусной пневмонии в некоторых случаях сопровождается почечной недостаточностью.

При подозрении на бета-коронавирусную инфекцию (ближневосточный респираторный синдром) обязательна консультация инфекциониста, пульмонолога и реаниматолога, при выраженном гастроэнтерите – гастроэнтеролога.

Этиологическая верификация возбудителя и вспомогательная диагностика проводится физикальными, лабораторными и инструментальными методами.

Дифференциальную диагностику проводят с атипичной пневмонией (ТОРС), гриппом, легионеллёзом, орнитозом, аспергиллёзом, микоплазмозом, пневмоцистозом, туберкулёзным казеозным распадом лёгких, брюшным тифом, сепсисом, бактериальными пневмониями, бронхитами. Симптомы гастроэнтерита следует дифференцировать с вирусными диареями, энтеровирусной инфекцией, пищевыми отравлениями, сальмонеллёзом и шигеллёзом.

Всемирная организация здравоохранения дала России разрешение на ввоз штамма коронавируса для создания вакцины и разработки лечения инфицированных вирусом MERS.

Учёные из Национального института аллергии и инфекционных болезней в Бетесде (США) провели на животных ранние доклинические испытания собственной вакцины против коронавируса ближневосточного респираторного синдрома. По результатам исследования, экспериментальная вакцина способствовала выработке антител у мышей и резус-макак

Учитывая, что вирус больше распространён среди верблюдов, чем среди людей, эффективной мерой профилактики среди людей может быть вакцинация одногорбых верблюдов. В направлении создания подобных вакцин ведутся разработки.

Вакцина, разработанная в Пенсивальнском университете, продемонстрировала эффективность на верблюдах и макаках. Так как верблюды являются одними из носителей коронавируса, вакцину планируют использовать не только для предотвращения заражения людей, но и для иммунизации верблюдов.

В настоящий момент MERS-CoV продолжает циркулировать и вызывать новые случаи заболевания.

Лечение:

Специфического лечения не разработано. Противовирусные препараты не рекомендованы, хотя некоторые исследования показали, что вирус MERS-CoV более чувствителен к применению интерферонов альфа и бета по сравнению с вирусом SARS-CoV. Лечение практически полностью является поддерживающим и симптоматическим.

Так, в соответствии с Методическими рекомендациями по диагностике, лечению и профилактике ближневосточного респираторного синдрома, обусловленного коронавирусной инфекцией (MERS-CoV) под редакцией академика РАН, профессора О.И. Киселева, рекомендуется:

1.Противовирусная терапия – назначение как можно раньше (в первые часы/дни заболевания). В качестве противовирусного препарата широкого спектра действия может рекомендован Рибавирин как препарат, успешно применявшийся при лечении инфекции ТОРС в Китае, Сингапуре и др. странах. Дозировка препарата зависит от клиренса креатинина.

Также имеет место эффективность применения комбинации Рибавирина и Интерферона-?2b (ИФН-?2b).

Поскольку новый коронавирус имеет сродство с коронавирусом, вызвавшим вспышку ТОРС также можно рассматривать Умифеновир как

потенциальное средство профилактики и лечения MERS-CoV инфекции человека. Препарат рекомендуется применять 4 раза в сутки по 200 мг каждые 6 часов (суточная доза 800 мг).

Также на ранних стадиях заболевания могут использоваться ингибиторы нейраминидазы (осельтамивир) и индукторы интерферона (меглюмина акридонацетат, тилорон).

Для усиления противовирусного эффекта показано использование антиоксидантной терапии, которая может выполнять также цитопротективную функцию.

Рекомендуется назначение флавоноидов и витаминов:

– Рутозид (Рутин, Аскорутин) – по 1–2 таблетки 3–4 раза в день;

– Дигидрокверцетин (Дигидрокверцетин в таблетках, Диквертин, Дигидрокверцетин NTG, Араглин Д);

– Витамин E – по 100–300 мг/сут;

– Витамин С – по 50–100 мг 3–5 раз в сутки после еды.

2.Антибактериальная терапия.

Больным с MERS-CoV инфекцией следует назначать такое же лечение, как и любому больному с пневмонией неизвестной этиологии. В схемы рекомендуется включать антибактериальные препараты с широким спектром действия (левофлоксацин, цефтриаксон) для гарантированного подавления известных бактериальных агентов. Кроме того рекомендуется использование антибактериальных препаратов, предусмотренных действующими стандартами для лечения внебольничной пневмонии.

3.Противовоспалительная и жаропонижающая терапия

Показаниями для использования дополнительных жаропонижающих средств являются абсолютные цифры термометрии (выше 38–38,5 С), выраженные мозговые и сердечно–сосудистые нарушения.

4. Дезинтоксикационная терапия:

– растворы электролитов;

– раствор глюкозы (5% и 40%) в сочетании с аскорбиновой кислотой и панангином;

– Альбумин – 10–20% раствор из расчета 5-10/2-5 мг/кг в/в капельно (целесообразно назначение больным с гипоальбуминемией);

– Меглюмина натрия сукцинат – Реамберин (Натрия хлорид + Калия хлорид + Магния хлорид + Натрия гидроксид + Меглюмина натрия сукцинат) – в/в капельно со скоростью до 90 капель/мин (1–4,5 мл/мин) – 400–800 мл/сут;

– Цитофлавин (Инозин + Никотинамид + Рибофлавин + Янтарная кислота) – в/в капельно по 5,0-10,0 мл в разведении на 100–200 мл 5–10% раствора декстрозы или 0,9% раствора натрия хлорида;

– Ремаксол (Янтарная кислота + Никотинамид + Инозин + метионин + N-метилглюкамин) – в/в, капельно со скоростью 40–60 капель/мин (2–3 мл/мин) –400–800 мл/сутки;

Инфузионная терапия (не более 1,5 л в сутки) проводится под обязательным контролем состояния пациента, включая артериальное давление, аускультативную картину легких, гематокрит (не ниже 0,35 л/л) и диурез. Следует с осторожностью подходить к введению внутривенных растворов пациентам с ТОРИ, поскольку избыточные трансфузии жидкостей могут ухудшить насыщение крови кислородом, особенно в условиях ограниченных возможностей искусственной вентиляции легких.

С целью профилактики отека головного мозга и отека легких больным MERS-CoV инфекцией целесообразно проводить инфузионную терапию на фоне форсированного диуреза (лазикс/фуросемид 2–4 мл – 1% в/м).

5.Респираторная поддержка

Для больных с тяжелой/осложненной формой заболевания без выраженных респираторных нарушений или с умеренно выраженными респираторными нарушениями рекомендуется ингаляция кислорода. При данном методе кислород ингалируют через маску или же носовой катетер со скоростью 5-7 литров в минуту, при необходимости увеличивая до 10 литров в минуту. Перед назначением ингаляции определяют SpO2 и в последующем

через 10-15 минут повторно производят измерение. Положительный терапевтический эффект проявляется в повышении SpO2 на 2 и более процентов (PaO2 более 60 мм.рт.ст., SpO2 выше 92%).

При показаниях тахипноэ (более 25 движений в минуту, не исчезает

после снижения температуры тела), PaO2 < 60 мм.рт.ст. либо PaO2/FiO2 < 300, PaCO2 > 45 мм.рт.ст., pH < 7,35, Vt < 4 мл/кг (дыхательный объем (мл) / масса тела (кг) больного), SpO2 < 92% назначается неинвазивная масочная вентиляция легких. Неинвазивная масочная вентиляция легких, как правило, проводится в триггерных вспомогательных режимах, большинство из которых (в той или иной форме) реализовано на многих современных аппаратах ИВЛ. Абсолютные противопоказания: отсутствие полной кооперации с больным (выраженная энцефалопатия, отсутствие сознания);

аномалии и деформации лицевого скелета, препятствующие наложению маски.

Рекомендуется сочетание неинвазивной вентиляции легких с назначением лекарственных средств через небулайзер. К таким лекарственным средствам можно отнести теплый физиологический раствор, ацетилцистеин, сальбутамол (2,5-5 мг в 5 мл физиологического раствора).

6. Лечение септического шока.

При септическом шоке следует незамедлительно и быстро осуществить внутривенную инфузионную терапию кристаллоидными растворами (инфузия одного литра раствора должна осуществиться в течение 30 минут или менее). Если состояние пациента в результате инфузии растворов не улучшается и появляются признаки гиперволемии (т.е. влажные хрипы при аускультации, отек легких по данным рентгенографии грудной клетки), то необходимо сократить объемы вводимых растворов или прекратить инфузию. При неотложных мероприятиях не рекомендуется использовать гипотонические растворы или растворы крахмала. Применение растворов крахмала связано с повышением частоты нарушений функции почек и почечной недостаточности.

Если, несмотря на активную инфузионную терапию, больного не удается вывести из состояния септического шока, следует назначить вазопрессоры (норадреналин (норэпинефрин), адреналин (эпинефрин) и дофамин). Вазопрессоры рекомендуется вводить в минимальных дозах, обеспечивающих поддержку перфузии (т.е. САД > 90 мм рт. ст.), через центральный венозный катетер под строгим контролем скорости введения, с частой проверкой показателей давления крови.

Пациентам с персистирующим шоковым состоянием, которым требуется повышение доз вазопрессоров, целесообразно внутривенное введение гидрокортизона (до 200 мг/сутки) или преднизолона (до 75 мг/сутки). Эксперты ВОЗ не рекомендуют при MERS-CoV назначение высоких доз кортикостероидных препаратов.




3.COVID-19 – великий и ужасный





3.1.Общие сведения о коронавирусе, вызвавшем пандемию пневмонии нового типа


SARS-CoV-2 (Severe acute respiratory syndrome-related coronavirus 2), ранее 2019-nCoV (англ. 2019 novel coronavirus) – оболоченый (+) одноцепочечный РНК-вирус, относящийся к роду Betacoronavirus подрода Sarbecovirus.

Коронавирусы, к которым относится SARS-CoV-2, обычно вызывают простуду, но к этому же семейству относятся опасные вирусы SARS-CoV и MERS-CoV, вызывающие тяжелый острый респираторный синдром и ближневосточный респираторный синдром соответственно.

Следует отметить что коронавирусная инфекция SARS-CoV-2 является зооантропонозной, то есть возможна передача от животных к человеку. Выяснено, что источником SARS-CoV были циветы, а MERS-CoV – одногорбые верблюды. Возможно, что и в случае SARS-CoV-2 источником инфекции являются животные – генетический анализ вируса выявил схожесть с коронавирусами, распространёнными среди подковоносных летучих мышей. Авторы работы, опубликованной в Nature Microbiology, определили, что SARS-CoV-2 и вирус летучей мыши RaTG13, выделенный из летучей мыши вида Rhinolophus affinis, разделились от 40 до 70 лет назад. Рассчитанная с помощью трёх разных биоинформатических подходов максимальная вероятность этого события пришлась на 1948, 1969 или 1982 год.

SARS-CoV-2 – это Betacoronavirus B, впервые выявленный 31 декабря 2019 года в результате анализа нуклеиновой кислоты у пациента с пневмонией, вызвал настоящую пандемию пневмонии нового типа COVID-19 и к весне 2020 года стал всемирной проблемой, в результате чего были закрыты многие границы и введены экстренные меры безопасности (карантин, строгая изоляция и так далее). Изначально именовался «китайским» вирусом, поскольку был обнаружен в г. Ухань КНР, затем мутировал в «итальянский» и «европейский» («испанский») штаммы, которые распространились по всему миру, в конце 2020 года появился новый штамм – «британский», в начале 2021 года – «южноафриканский».

Первыми геном вируса полностью расшифровали службы здравоохранения Китая, 10 января его сделали публично доступным. До 12 января 5 геномов были зарегистрированы в базе данных GenBank, к 26 января их количество выросло до 28. За исключением самого раннего генома, геномы находятся под эмбарго в GISAID. Филогенетический анализ доступен через Nextrain.

На данный момент в открытом доступе можно найти почти 300 000 последовательностей геномов SARS-CoV-2 (геном=набор генов), которые расставлены в филогенетическом дереве с 5 января 2020 года по сегодняшний день.

Длина РНК-последовательности коронавируса составляет около 30 000 нуклеотидов. РНК варианта Wuhan-Hu-1 (номер GenBank MN908947, RefCeq NC_045512) SARS-CoV-2 содержит 29 903 нуклеотида с нетранслируемыми участками длиной 281 и 325 нуклеотидов. Предполагаемые кодирующие области распределены по 10 белкам.

Размер вирионаSARS-CoV-2 составляет порядка 50-200 нанометров. Белковое моделирование, осуществлённое на основе расшифрованного генома вируса, показало, что рецептор-связывающий S-белок вируса может иметь достаточно высокую афинность белку человека ангиотензинпревращающий фермент 2 (АПФ2, англ. ACE2) и использовать его как точку входа в клетку. Именно АПФ2 является рецептором для вируса SARS-CoV-2, так же как и для вируса SARS-CoV. Вирус для проникновения в клетки человека использует белок SP, с помощью которого взаимодействует с белком басигином (CD147) заражаемой клетки человека

Генетически вирус на 80 % идентичен SARS-CoV. Однако, изучение аэрозолей продемонстрировало, что SARS-CoV-2 весьма эффективно распространяется даже в тех условиях, при которых SARS-CoV и MERS-СoV неактивны. Так, при температуре 23 градуса Цельсия и относительной влажности 53 процента SARS-CoV-2 сохраняется в аэрозольной суспензии 16 часов.

Индекс репродукции SARS-CoV-2, по данным Китайского центра по контролю и профилактике заболеваний, оценивается между 2 и 3, что по определению индекса соответствует количеству людей, которые заражаются от одного инфицированного, одно из исследований оценило среднее значение по состоянию на 22 января 2020 года в 2,2 (другое ранее проведённое исследование показывало диапазон 3,3–5,47).

Учитывая, что первые случаи заболевания COVID-19 были зарегистрированы в китайском городе Ухань, большинство заболевших было связано с местным оптовым рынком морепродуктов Хуанань, где продавались живые животные. На ранних этапах количество заражённых удваивалось примерно каждые 7,5 дней; к середине января 2020 года вирус проник и в другие провинции Китая – этому способствовал статус Уханя как важного транспортного узла и возросшее число поездок в связи с приближающимся китайским Новым годом. Зимой 2019–2020 годов большинство новых случаев заболевания и смертей приходилось на Хубэй – провинцию Китая, центром которой является Ухань; однако уже 26 февраля количество новых случаев COVID-19 за пределами Китая превысило количество заражений в пределах этой страны. В конце января 2020 года ВОЗ присвоила распространению заболевания статус «чрезвычайной ситуации международного значения», а в марте охарактеризовала его как мировую пандемию.

По данным на декабрь 2020 года было подтверждено 68,92 млн случаев заражения и 1,56 миллиона летальных исходов. При этом средняя смертность по всему миру составляла около 6-7 %, по странам: в России – 1,2 %, в Испании – 3%, в Мексике – 13%, в Соединенном Королевстве  и Италии – 14 %, во Франции – 15,3 %, в США и Бразилии – 6 %, одна из самых высоких смертностей была зарегистрирована в Йемене – 29%.

По данным Яндекс.Стат на 23 февраля 2021 года в мире зарегистрировано более 112 млн. зараженных коронавирусом нового типа SARS-CoV-2 (COVID-19), из них со смертельных исходом почти 2,5 млн. человек.

В целом по миру больше половины случаев заболевания пришлось на США, Индию, Бразилию, Францию и Россию.




3.2.Мутации коронавируса нового типа


Прежде, чем говорить о мутациях вируса, следует понять, что же такое мутация и каков её механизм.

Итак, при репликации вирусного генома часто случаются ошибки, обычно это точечные мутации – замены, перестановки букв генетического кода, удаления. Особенно это характерно для РНК-вирусов, к которым относится и SARS-CoV-2. Для исправления ошибок есть специальные ферменты, но они не всегда успешно срабатывают, так что вирусы постепенно эволюционируют.

Поскольку защитная система организма распознает в белке-шипе чужака и вырабатывает особые белки-антитела, нейтрализующие инфекцию, то изменения белка-шипа (или же мутации) могут приводить к ускользанию коронавируса от тестов, сформированного иммунитета и некоторых вакцин.

Поэтому исследователи с самого начала эпидемии выборочно секвенировали геном возбудителя, чтобы следить за его эволюцией. Результаты со всего мира загружают в базу GISAID. Сейчас там уже более полумиллиарда образцов.

С начала вспышки болезни в Китае до марта 2020 года, на основе анализа 103 публично доступных геномов SARS-CoV-2 было обнаружено не менее 149 изменений. Как показало исследование, коронавирус выделился в два подтипа (клайда): наиболее часто встречающийся L (70 %) и S (30 %).

Подтип L чаще встречался на ранних этапах вспышки в Ухане, однако к началу января 2020 года его частота снизилась. Человеческое вмешательство оказало сильное селективное давление на этот подтип, который может быть более агрессивен и распространяется быстрее.

С другой стороны, сравнительная распространённость подтипа S, который эволюционно старее и менее агрессивен, вероятно, возросла в силу более слабого селективного давления.

Чуть позже был выделен подтип или клайд О.

Первоначальное разделение вирусов SARS-CoV-2 на клайды базировалось на минорных мутациях в структуре генома, которые не имели значения для практического здравоохранения, поскольку не изменяли биологические свойства вируса (вирулентность, контагиозность, чувствительность к противовирусным препаратам).

В дальнейшем, циркулирующие штаммы SARS-CoV-2 также продолжали накапливать отдельные точечные мутации в геноме, которые привели к выделению следующих двух подтипов: клайда V в середине января 2020 года (с мутациями в белках NSP6 и ORF3) и клайда G с характерной мутацией D614G. Данный клайд также разделился впоследствии (примерно с февраля 2020 года) на два подклайда GR и GH, самые распространенные в мире. Большинство выделенных в России вирусов также относятся к клайду G (GR и GH).

D614G расшифровывается как замена в молекуле белка 614-й по счету аминокислоты аспартата (обозначается буквой D) на глицин (G). Именно благодаря этой мутации вариант быстро распространился по всему миру. Но на опасность вируса она не повлияла. В настоящее время известно около 50 цепочек вируса мутации D614G.

Молекулярные биологи из Нью-Йоркского геномного центра и Нью-Йоркского университета заявили:

«Широко распространенная мутация D614G значительно ускоряет передачу вируса между самыми разными типами человеческих клеток, включая клетки из легких, печени и кишечника. Одной из причин повышенной заразности вируса может быть то, что эта мутация делает SARS-CoV-2 более стойким к человеческим ферментам».

Известный в Германии вирусолог Александер Кекуле высказал мнение, что по всему миру распространилась «итальянская мутация» коронавируса SARS-CoV-2 (99,5% всех случаев заражения). Произошло «генетическое изменение» вируса, который стал «заразнее, чем изначальный уханьский вариант» из Китая.

В конце 2020 года, по мере распространения коронавируса по миру, обнаружились и другие мутации:

– VOC-20212/01, найден в Великобритании.

– Cluster 5, найден в Дании (результатом обнаружения стал карантин и умерщвление норок);

– 501.V2.Variant, найден в Южной Африке.

Что касается «британского» штамма B.1.1.7, то он был зафиксирован осенью 2020 года. Произошло это в английском графстве Кент, отсюда и название – кентский, британский. Подскочила заболеваемость, многие страны прекратили сообщение с Соединенным Королевством. Эксперты признали, что этот вариант возбудителя более заразен. Ему присвоили код – VUI-202012/01: он включает аббревиатуру термина Variant Under Investigation (вариант на рассмотрении), а дальше по порядку – год, месяц и номер. Уже в середине января 2021-го на брифинге в Агентстве здравоохранения Великобритании заявили, что новый вариант доминирует в стране и, по предварительным оценкам, он более опасен. Код изменили на VOC-202012/01, где VOC – Variant of Concern (вариант, вызывающий тревогу). VOC-202012/01 произошел от D614G и уже сформировал собственную линию – B.1.1.7. Всего в нем 14 мутаций, из которых значимы три – и все в белке-шипе.

Белок-шип (S-белок) очень большой, это цепь из 1273 пептидов, скрученная и перевитая. Его головная часть служит, фигурально выражаясь, отмычкой от замка в клетку человека. За изменениями этой отмычки ученые наблюдают особенно тщательно, поэтому их сразу насторожила мутация N501Y. Всего лишь замена одной аминокислоты на другую – но вирус стал более заразным.

Еще одна мутация – P681H – обнаружена в том месте, где расщепляется белок. Само по себе это расщепление – новация SARS-CoV-2. Считают, что она делает патоген более вирулентным. К чему приведет ее изменение, еще предстоит выяснить.

Третье значимое изменение – делеция 69-70, удаление шести оснований в гене, кодирующем аминокислоты 69 и 70. Как выяснилось, это сбивает с толку некоторые ПЦР-тесты, в частности системы TaqPath фирмы ThermoFisher Scientific – их широко используют в Великобритании. Они дают положительный результат, если в образце обнаружены сразу три следа возбудителя – из белка-шипа, нуклеокапсидного белка (внутренняя оболочка вируса) и неструктурных белков. Делеция 69-70 приходится как раз на тот участок, который анализирует тест, поэтому результат получается ложноотрицательным.

Однако этот «прокол» тест-систем британцы обернули в свою пользу. Поскольку в 99,6 процента случаев ложноотрицательный результат совпадает с делецией 69-70, а она, в свою очередь, служит маркером VOC-202012/01, то по числу тестов можно буквально в реальном времени следить за распространением нового варианта возбудителя. Сейчас он доминирует в Великобритании и быстро идет по миру.

Отслеживая контакты зараженных этой версией коронавируса, ученые выяснили: скорость распространения у нее на 25-40 процентов выше, чем обычно. И риск смерти больше в 1,65 раза.

Мутации в спайк-белке. Синие – найдены более ста раз, серые – менее ста раз, розовые – в сайтах гликозилирования, желтые – мутации на участке, цепляющемся за мембрану клетки. Зеленая спираль – человеческий рецептор ACE2.

Что касается мутации, зафиксированной в Дании, то всего было выявлено пять кластеров норковых вариантов SARS-CoV-2. Датский государственный институт сывороток (SSI) определил их как кластеры 1-5. В кластере 5, также называемом SSI как ?FVI ? spike , было подтверждено несколько различных мутаций в спайковом белке вируса. Специфические мутации включают 69-70deltaHV (делеция остатков гистидина и валина в 69-м и 70-м положениях в белке), Y453F (изменение тирозина на фенилаланин в положении 453, внутри рецептор-связывающего домена спайкового белка), I692V (изолейцин на валин в положении 692), M1229I ( метионин на изолейцин в положении 1229) и неконсервативная замена S1147L. Связанные с норкой мутации, которые частично напоминают мутации, обнаруженные в Дании, хотя и являются частью отдельной геномной группы, известны в Нидерландах.





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=64322406) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



Коронавирус SARS-CoV-2, вызвавший пандемию пневмонии COVID-19, стал настоящим испытанием для всех стран мира. Информации о нем было крайне недостаточно.

В данной книге собраны все сведения о семействе коронавирусов, в том числе о SARS-CoV-2 и его мутациях, подробно описаны этапы заражения, течения болезни, схемы медикаментозного лечения, диета, даны рекомендации по устранению постковидных синдромов и обработке помещения. Также в книге рассмотрены социально-экономические меры по преодолению кризисных явлений ввиду пандемии в различных странах мира, представлен прогноз развития эпидемической ситуации, в том числе дана оценка вероятности новых пандемий.

Администрация сайта ЛитРес не несет ответственности за представленную информацию. Могут иметься медицинские противопоказания, необходима консультация специалиста.

Как скачать книгу - "Коронавирус: всё что нужно знать" в fb2, ePub, txt и других форматах?

  1. Нажмите на кнопку "полная версия" справа от обложки книги на версии сайта для ПК или под обложкой на мобюильной версии сайта
    Полная версия книги
  2. Купите книгу на литресе по кнопке со скриншота
    Пример кнопки для покупки книги
    Если книга "Коронавирус: всё что нужно знать" доступна в бесплатно то будет вот такая кнопка
    Пример кнопки, если книга бесплатная
  3. Выполните вход в личный кабинет на сайте ЛитРес с вашим логином и паролем.
  4. В правом верхнем углу сайта нажмите «Мои книги» и перейдите в подраздел «Мои».
  5. Нажмите на обложку книги -"Коронавирус: всё что нужно знать", чтобы скачать книгу для телефона или на ПК.
    Аудиокнига - «Коронавирус: всё что нужно знать»
  6. В разделе «Скачать в виде файла» нажмите на нужный вам формат файла:

    Для чтения на телефоне подойдут следующие форматы (при клике на формат вы можете сразу скачать бесплатно фрагмент книги "Коронавирус: всё что нужно знать" для ознакомления):

    • FB2 - Для телефонов, планшетов на Android, электронных книг (кроме Kindle) и других программ
    • EPUB - подходит для устройств на ios (iPhone, iPad, Mac) и большинства приложений для чтения

    Для чтения на компьютере подходят форматы:

    • TXT - можно открыть на любом компьютере в текстовом редакторе
    • RTF - также можно открыть на любом ПК
    • A4 PDF - открывается в программе Adobe Reader

    Другие форматы:

    • MOBI - подходит для электронных книг Kindle и Android-приложений
    • IOS.EPUB - идеально подойдет для iPhone и iPad
    • A6 PDF - оптимизирован и подойдет для смартфонов
    • FB3 - более развитый формат FB2

  7. Сохраните файл на свой компьютер или телефоне.

Аудиокниги автора

Последние отзывы
Оставьте отзыв к любой книге и его увидят десятки тысяч людей!
  • константин александрович обрезанов:
    3★
    21.08.2023
  • константин александрович обрезанов:
    3.1★
    11.08.2023
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *