Книга - Искусство влагометрии твердых и сыпучих материалов

a
A

Искусство влагометрии твердых и сыпучих материалов
Анатолий Сергеевич Салтыков-Карпов


В этой книге представлены результаты научно-практических исследований по измерению влажности твердых и сыпучих материалов. Немного о науке, практике и бизнесе во влагометрии. Показаны практические примеры развития бизнеса в этом направлении применительно к особенностям измерения. Россия – великая лесная держава, в которой должны быть разработаны и использованы такие же сопоставимые по масштабу средства измерения и контроля влажности твердых и сыпучих материалов. Эта книга предназначена для специалистов, стремящихся развивать национальный наукоёмкий бизнес.



Губит людей не пиво,

Губит людей вода.

    Песня из кинофильма Леонида Гайдая




От автора


Первоначально автор не планировал публиковать свои сочинения на эту тему. Однако новая заокеанская жизнь внесла свои коррективы.

Автор заранее просит прощения у своих бывших коллег по работе и товарищей, с которыми пришлось сталкиваться на этом пути за свои высказывания.



Иногда внуки спрашивают: «Дед кем ты был? Что делал?». Дети и внуки хотели бы узнать, чем занимался их дед и отец всю свою сознательную жизнь.

Поэтому скорее всего автор пишет не для России, а для своих американских внуков, внучек и правнуков, которые возможно хотят что – то узнать о своем историческом прошлом.

Эта интересная часть история началась с того момента, как распался Советский Союз. Вместе с ним улетучились все мечты о светлом будущем и не только одного автора, но и многих других бывших советских людей. Страна свернула с пути построения коммунизма и возвратилась на путь капитализма. Поэтому пришлось практически начинать жить заново. Да не то чтобы заново, а выживать.

Возможно эта рукопись послужит стимулом и источником информации для будущих российских бизнесменов, которые поднимут знамя национальной влагометрии и подтвердят статус России в наукоемком бизнесе.

Россия – великая лесная держава. Средства контроля качества должны быть сопоставимы с такими же, которые существуют у конкурентов.

Эту монографию можно рассматривать как некий научно-исследовательский отчет о проделанной работе.

Этот отчет некое откровение, исповедь, почти бесследно исчезнувшей научно-исследовательской группы, которая несколько десятилетий работала над проблемой измерения влажности древесины и других твердых и сыпучих материалов. Поэтому хотелось бы рассказать о том как работали, что мешало, что помогало и как можно жить в наукоемком бизнесе в России.

В этой монографии не будут указываться конкретные фамилии или имена.

Поэтому рукопись представлена без всякой систематизации. Она изложена как источник спонтанной информации.

Эта монография скорее всего посвящена молодым людям, которые еще вступают в новую демократическую жизнь в России. Ознакомление с этой монографией позволит им иметь представление о том, что может их ожидать на пути развития собственного наукоемкого бизнеса. Это будет не обязательно именно этот вид бизнеса, но аналогия может иметь место. Поскольку основные проблемы имели не технические или финансовые особенности, а скорее всего социо-психологические.

С уважением к читателям

Карпов Анатолий Кью Гарденс, штат Нью-Йорк, США




1. Введение


В данном выпуске авторы рассматривают некоторые актуальные вопросы влагометрии (науки об измерении влажности), которые интересуют специалистов, желающих производить качественную продукцию.

В брошюре Вы найдете ответы на многие вопросы, часто задаваемые разработчиками и пользователями по контролю влажности, по конструкциям влагомеров (Влаг). Авторы, имея многолетний (более 25 лет) научно-практический опыт по разработкам электронных Влаг, представляют свои аналитические и практические исследования и профессиональный взгляд на современное развитие проблемы для российских условий.

Данная информация предназначена для:

– пользователей влагомеров,

– технологов, связанных с сушкой и деревообработкой,

– приборостроителей, занятых разработкой электронных систем контроля влажности,

– специалистов, изучающих интеллектуальную конкуренцию с учетом российской специфики.

Эту работу можно также рассматривать как учебно-методическое пособие для студентов и молодых предпринимателей, работающих или собирающихся работать в наукоемких сегментах российского рынка.




2. Из истории развития влагометрии древесины и древесных материалов


С незапамятных времен люди используют древесину в своей жизни. Они обратили внимание на то, что дома и мебель, изготовленные из хорошо высушенной и выдержанной древесины служат очень долго.

В настоящее время эта особенность древесины нашла научное обоснование. Наука, занимающаяся измерением влажности – названа влагометрией.

Все методы измерения влажности материалов разделяются на прямые и косвенные. Для измерения влажности прямым способом в деревообработке служит сушильно-весовой или термогравиметрический способ. Этот способ является эталонным для проверки всех остальных. Для реализации этого способа использовалось оборудование: аналитические весы, сушильный шкаф с регулятором температуры и эксикатор для выдерживания и остуживания образцов.

Развитие автоматизации и микроЭВМ усовершенствовало этот процесс и привело к регулировке температур, автоматическому взвешиванию, использованию встроенных микросушилок с вентиляцией, вычислению влажности по расчетной формуле, контролю окончания процесса сушки образца до его абсолютно сухого состояния, и т. п. При всех достоинствах прямой метод имеет существенные недостатки, ограничивающие его применение.

К ним можно отнести: 1)Сушка образцов может занимать от десятков минут до десятков часов; 2)Процесс обработки результатов очень трудоемок, требует ответственности и аккуратности; 3)Требуются большие энергозатраты; 4)Малоэффективен, так как не позволяет контролировать большие, представительные выборки; 5) Метод является разрушающим, производящим безвозвратные выборки, которые поступают в дальнейшем преимущественно в отходы; 6) Данные такого контроля не могут быть использованы для оперативного регулирования режимов и автоматизации процесса сушки.

Более перспективным оказалось применение косвенных методов влагометрии с использованием известных физических явления, которые могли иметь тесную статистическую связь электрофизических параметров (сопротивления, тока, емкости, излучений и т. п.) с влагой в твердом теле.






Рис. 2.1. Схематическое изображение удельного веса публикаций по методам влагометрии древесины.

1-методы высушивания; 2 – емкостный; 3 – кондуктометрический; 4 – сверхвысокочастотный; 5 – оптический; 6-радиометрический



Развитие прикладной влагометрии связано с развитием различных направлений в науке и технике. Появляется поле деятельности для экспериментов и реализации на практике. Мы провели анализ отечественных и зарубежных публикаций на основе тематических подборок по влагометрии, сделанными в Государственной Публичной библиотеке. Для этого использовались данные по развитию влагометрии 1962–1977 гг.

Было выявлено, что основное количество публикаций посвящено конструкциям приборов и работе с ними, примерно 40,8 %. За ними следуют публикации по емкостному методу – 12,8 %, сверхвысокочастотному 10,5 %, радиометрическому методу 9,5 %, методу высушивания 5,4 %, оптическим методам 2,9 %, кондуктометрическому методу 2,5 %. Для более наглядного представления тенденций развития каждого метода было построено схематическое изображение удельного веса публикаций по методам. Оно представлено на рис. 2.1.

Развитие этих методов требовало наличия материально-технической базы для разработки таких систем контроля. На начальном этапе развития влагометрии, используя постоянный ток, были разработаны первые простейшие Влаг с игольчатыми датчиками. Начало кондуктометрической (игольчатой) влагометрии было заложено в конце 19 – начале 20 века. До сих пор этот метод все еще остается живучим, несмотря на яростную критику его недостатков.

Развитие радиотехники и измерений позволило расширить исследования и решать проблему, измеряя связь влаги и емкости, диэлектрической проницаемости, электромагнитного затухания, комплексного сопротивления и т. п… Этот метод является более информативным и ему было уделено множество публикаций. Он более прост для реализации.

Для разработки кондуктометрических Ивлаг достаточно познаний в области измерений на постоянном токе, электротехнике, и древесиноведения.

Для разработки емкостных Бвлаг к этим знаниям необходимо добавить знания в области радиотехники, радиоприемных и радиопередающих устройств, измерительной технике, измерениях параметров диэлектриков, антенным устройствам, источникам стабильного питания радиочастотных устройств, конструирования высокочастотной радиаппаратуры и измерительной техники.

Развитие радиолокации позволило создавать излучатели и приемники сверхвысокочастотного (СВЧ) диапазона. В качестве СВЧ излучателей и приемников вместо иголок стали использоваться рупорные антенны различных форм, которые пронизывали своей энергией образцы древесины любой толщины насквозь. В зарубежной конкурентной борьбе специалисты по игольчатой влагометрии вводят клиентов в заблуждение, распространяя ложные слухи о том, что эти методы являются поверхностными. СВЧ энергия распространяется от рупора к рупору в свободном пространстве, где перемещается измеряемый материал. Этот метод обладает высокой проникающей способностью на любую глубину. Но он чувствителен к структуре древесину. Электромагнитный вектор излучаемой волны еще дополнительно вращается и искажает показания в древесине. На рис. 2.2 показана процедура измерения влажности таким методом.

Измерительный генератор устанавливается с одной стороны, а приемник с другой стороны объекта. В результате сквозного проникновения можно измерять влажность в любом материале любой толщины.






Рис. 2.2. Методы измерения влажности в свободном пространстве.



С точки зрения теории антенн древесина с ее наличием годовых колец и расположения срезов представляет собой диэлектрическую линзу. В ней наряду с имеющейся диэлектрической проницаемостью есть фактор диэлектрической линзы. Интерес к этому методу значительно усилился с развитием полупроводниковой техники СВЧ, появлению таких приборов, как: генераторы на диодах ГАННА, лавинно-пролетные диоды и арсенид-галлиевые транзисторы. В перспективе этот метод еще скажет свое веское слово. Для этого требуется использование микроЭВМ, способных вести обработку по многомерным методам измерения неоднородных в пространстве и времени веществ (древесины). Речь тут в данном случае может идти о развитии совершенно новых направлений таких как матричная и статистическая комбинационная влагометрия. Но это пока далекая перспектива. Для воплощения этих направлений требуется прорыв в области преобразователей влажности.

Развитие оптоэлектроники и инфракрасной техники позволило создать инфракрасные (ИК) Влаг. Но для использования в измерении влажности пиломатериалов они не пошли, несмотря на то, что могли охватывать весь диапазон влажности. Это связано с тем, что они имели очень малую глубину проникновения. Отраженный сигнал зависит от шероховатости поверхности. В настоящее время в ИК-области имеются полупроводниковые излучатели и приемники, в которых может быть применена электронная модуляция светового потока. Это позволяет создавать компактные системы контроля. Практически он может быть использован для контроля поверхностной влажности.

Радиометрический метод влагометрии получил свое бурное развитие после фундаментальных исследования, связанных с развитием атомной энергетики. Радиоизотопные Влаг несмотря на мощную государственную поддержку все же с трудом внедрялись в промышленость. Пользователи опасались радиоактивного заражения. После ряда катастроф, связанных с эксплуатацией атомных электростанций – этот метод был дискредитирован и почти полностью исключен для использования. Радиоизотопные приборы позволяют измерять плотность материала. Они могли быть использованы для введения поправки на плотность древесины.

Последним достижением в развитии влагометрии явилась разработка комбинированных методов. Идея заключалась в использовании множества частот или параметров и проведения расчетов на основе полученной комбинированной функции для значительного увеличения точности. Несмотря на полученные положительные результаты этот метод также пока еще не нашел своего распространения. Он требовал больших затрат на практическую реализацию и может быть востребован в связи с развитием вычислительной техники.

Полученный опыт показал, что наиболее благоприятные перспективы могут ожидаться ПОКА только в диэлькометрической влагометрии, что и подтвердилось мировой конкурентной практикой.

Поэтому в настоящее время остались уцелевшими в ходе упорной и напряженной конкурентной борьбы на мировых рынках три метода, на которых и строятся почти все современные влагомеры.

1. Метод высушивания,

2. Игольчатый (кондуктометрический)

3. Безигольчатый (Wmet) (емкостной, диэлькометрический).

Но последнее слово во влагометрии еще не сказано. Поэтому промышленность и пользователи Влаг должны быть готовы к тому, что на рынке появятся новые разработки. Они будут опровергать существующие, которые как вещает рыночная реклама являются самыми точными.




3. Влажность в материалах


Как показывает практика внедрения влагомеров крайне недостаточно только знаний о продаваемом влагомере. Необходимо развить знание об объекте измерения. Поэтому рассмотрим как пример распределение влаги в древесных материалах.

Различают две формы влаги, содержащейся в древесине: связанную (гигроскопическую) и свободную.

На рис. 3.1. Изображено схематическое строение древесины с наличием в ней свободной и связанной влаги.






Рис. 3.1. Схематическое строение древесины с наличием в ней свободной и связанной влаги.



Связанная влага находится в толще клеточных оболочек, свободная влага содержится в полостях клеток и межклеточных пространствах. Связанная влага удерживается в основном физико-химическими связями; ее удаление сопряжено со значительными затратами энергии. Ее предельное значение примерно равно 30 %. Свободная влага удерживается только физико-механическими связями, удаляется значительно легче.

Различают следующие степени влажности древесины:

мокрая > 100 %; свежесрубленная (50–100 %); воздушносухая (15–20 %); комнатносухая (8–12 %); абсолютно сухая (около 0 %).

В растущем дереве влажность распределена неравномерно по радиусу и по высоте ствола. У хвойных пород влажность заболони в 3–4 раза выше влажности ядра и спелой древесины. По высоте ствола хвойных пород влажность заболони увеличивается в направлении от комля к вершине, а влажность ядра практически остается без изменения. В стволах ядровых лиственных пород (дуб, ясень, вяз) влажность ядра вверх по стволу слегка понижается. У заболони влажность почти не изменяется, а у лиственных безъядровых пород (осина, липа) влажность увеличивается от комля к вершине. В нижней части ствола спелая древесина в летний период имеет большую влажность, а в верхней меньшую, причем разница эта достигает 60 %.

Кроме сезонных изменений влажность древесины в стволах растущих деревьев подвержена и суточным колебаниям. Так в заболони ели утром влажность составляла 186 %, в полдень-132 % и вечером 150 %.

В раннем возрасте древесина ядровых пород состоит только из заболони и лишь в течением времени образуется ядро.

Ядрообразование является неотъемлемой частью жизнедеятельности дерева и зависит от условий произрастания. Например, объем ядра в 30 летней осине составляет 20–30 % от общего объема дерева. Ядро постепенно увеличивается за счет перехода части заболони в ядро. С возрастом часть площади сечения ствола, занимаемая заболонью уменьшается.

Проведенные исследования по атмосферной сушке пиломатериалов и кругляка позволяют проанализировать изменения по влажности. Так в июле из материала убывает примерно по 5 % влаги в сутки, а зимой по 1–2 % в месяц. На каждом складе, внутри каждого штабеля и даже вокруг отдельной влажной доски возникает свой климат.

При сплаве влажность увеличивается, но только заболони. Древесина некоторых пород в поперечном направлении вообще почти непроницаема для жидкостей. С образованием ядра сосуды в нем закупориваются особыми выростами-тиллами, поэтому проницаемость ядровой древесины, как правило, значительно меньше, чем заболонной.

При распиловке такой древесины при загрузке в сушильную камеру мы будем иметь доски, с различными объемами и значениями влажности. Это показано на рис. 3.2.

Такая же картина наблюдается и в березе. Это видно при обработке чурака на лущильном станке, представленном на рис. 3.3.






Рис. 3.2. Образование зон влажности при распиловке сырых бревен.






Рис. 3.3. Образование разброса влажности в березовом чураке. 1- сосна, 2- береза без ложного ядра, 3-береза с ложным ядром, 4-лиственница.



Специальные исследования по матричным методам влагометрии показали следующую картину.

Для этого были распилены образцы влажной древесины на кубики размером 20?20?20 мм и представлены в виде кубической матрицы размером 3?3?3. Для эксперимента выбирались образцы из досок: ядровых, заболонных и смешанных ядрово-заболонных.

Ниже показано наиболее характерное распределение влажности по слоям в образцах.













Рис. 3.4. Распределение влажности в образце заболонной доски по слоям











Рис. 3.5. Распределение влажности в образце ядровой доски по слоям











Рис. 3.6. Распределение влажности в образце ядрово-заболонной доски по слоям.



Необходимо отметить, что представленные исследования показывает примерную картину распределения влажности в пиломатериалах хвойных пород. Для представления картины распределения влажности в древесной стружке покажем на рис. 3.7.






Рис. 3.7. Временная диаграмма колебаний влажност сырых древесных частиц в систематических выборках.



Колебания влажнсти в древесной стружке имеют большой разброс. В одной маленькой выборке могут быть частицы с влажностью 30 % и 100 %.

На внутреннем рынке России появилось огромное количество материалов различных пород из-за рубежа. Поэтому исследования с ними можно производить по представленной методике.




4. Плотность в пиломатериалах


Плотность древесины влияет на построение Град хар-к. Мы пример, представляем сведения о формировании разброса плотности в древесине.

Плотность древесины изменяется в зависимости от района произрастания и колеблется в широких пределах. Данные представлены в табл. 4.1.



Табл 4.1. Данные по разбросу плотности в древесине.






Плотности древесных пород могут перекрываются своими пределами. Например, береза может иметь такую же плотность что и дуб и.п. При контроле электрическим Влаг влажности, например, дуба с разной плотностью мы будем иметь различные показания, хотя действительная влажность может быть одинакова в пределах одной поставки. При построении хар-к необходимо вводить коррекцию по районам применения Влаг для уменьшения Погр от плотности.




5. Динамика изменения влажности


О том как идет развитие процесса сушки можно наглядно показать на рис. 5.1. Мы видим, что с верхних слоев влажность убывает значительно быстрее, чем из глубины.

Кривая процесса сушки имеет экспоненциальный характер и в конце сушки существует очень энергоемкий период вытеснения оставшейся влаги. Уменьшение влаги в древесине, например, с 80 % до 75 % требует значительно меньших энергозатрат, чем с 13 % до 8 %. Кроме того при сушке в нижнем диапазоне значительно возрастают опасные деформации в древесине из-за усадочных явлений.

Усушка начинается примерно с 30 % и имеет примерно линейную зависимость. Под полной усушкой понимают уменьшение линейных размеров илил объема древесины при удалении всего количества связанной влаги (т. е. от предела гигроскопичности до нуля). Наиболее полная линейная усушка, равная 6–10 % в тангециальном направлении, в радиальном 3–5 %; а вдоль волокон 0,1–0,3 %. Полная объемная усушка в среднем составляет 12–15 %.






Рис. 5.1. Развитие влажностных разбросов в процессе сушки по толщине пиломатериала



Следовательно влагомеры со светодиодной градацией через 2 % могут использоваться только для механической обработки древесины только по 3 классу.



Для соблюдения условий точности изготовления продукции, чистоты, точности механической обработки и шероховатости поверхности с точностью измерения влажности нужно учитывать, что изменение влажности деталей не превышает при обработке по 1 классу точности ±0,5 %, по 2-му классу ±1,0 % и по 3 классу ±2–2,5 %.



Влажность влияет на механическую прочность древесины. На рис. 5.2. представлены зависимости прочности древесины, связанные с влажностью.






Рис. 5.2. Зависимости прочности древесины, связанные с влажностью.



Также сказывается влияние влажности склеиваемой древесины на прочность клеевого шва.

На рис. 5.3. Показана зависимость прочности клеевого скрепления от влажности древесины.






Рис. 5.3. Зависимость прочности клеевого скрепления от влажности древесины.



Ниболее высокая прочность имеется у древесины с влажностью 8±2 %.

ЭКОНОМИЧЕСКИЕ АСПЕКТЫ влагометрии рассмотрим на анализе зависимости продолжительности сушки и ее стоимости. Эта зависимость условная, так как в настоящее время цены имеют значительные колебания. Параметры сушки также имеют отклонения, что усложняет расчеты

График дает наглядное представление значимости завершающего этапа процесса сушки, наиболее дорогого и ответственного.

На рис. 5.4. представлена диаграмма в четырех квадратах. В первом квадранте представлена зависимость влажности и продолжительности сушки. Кривая выражается в виде экспоненты. В начале процесса сушки при удалении свободной влаги с высоким влагосодержанием кривая имеет резко выраженную крутизну. По мере вытеснения влаги процесс замедляется. На конечной стадии он переходит в плавную почти прямую имеющую небольшой наклон. В 4 квадранте дается приближенная связь времени и стоимости затрат на сушку.






Рис. 5.4. Зависимость продолжительности сушки и стоимости



Хотя и принято считать, что время – это деньги, однако же нельзя представлять, что эта зависимость будет иметь линейный характер. Скорее всего она будет иметь также нелинейный параболический характер. Это можно объяснить тем, что в начальном периоде сушки затраты будут значительно ниже, так как влага интенсивно выходит при переходе к конечной стадии необходимо повышать температуры и качество сушильного агента. Это естественно потребует еще больше энергетических затрат. Таким образом опираясь на эти две кривые мы можем построить кривую зависимости влажности и стоимости затрат.

Анализируя полученную кривую, мы видим, что основные затраты падают на конечную стадию процесса сушки. Поэтому измерение влажности в конечной стадии является важнейшим моментом для реального определения стоимости затрат и позволяет повысить точность оценки сушки.




6. Деформативность древесины


Из книг Б. Н. Уголева по развитию напряжений в древесине при сушке. При разрешении различных конфликтов при определении показателей качества древесины необходимо учитывать деформативность древесины и причины, связанные с влагообразованием. Процесс сушки древесины протекает при неравномерном распределении влажности по всему объему материала. Наличие неравномерного поля влажности, возникающего с самого начала процесса, приводит к созданию неоднородного деформированного состояния из-за неравномерной усушки и является первопричиной образования внутренних напряжений. Внутренние напряжения рассматриваются как совокупность – влажностных и остаточных напряжений.

Влажностные напряжения вызваны неоднородной усушкой материала, обусловленной в свою очередь неравномерным распределением в нем гигроскопической влаги. Эти напряжения, обусловленные упругими деформациями, относятся к категории временных; они исчезают при выравнивании влажности по объему (сечению) сортимента.

Остаточные напряжения обусловлены появлением в древесине неоднородных остаточных деформаций. Остаточные напряжения имеют место во время сушки и после ее полного завершения при выровненной по сечению доски влажности.

Поэтому не всегда деформация в древесине будет происходить по вине недосушки и имеющегося перепада по влажности, что часто ставится в вину тем, кто поставляет и использует древесину. В процессе деформирования заложен более сложный механизм, чем это кажется на первый взгляд и бытующее мнение о значимости влажностных напряжений значительно преувеличено.

На рис. 6.1.показана диаграмма изменения влажности и напряжений в процессе сушки древесины. Мы видим, что влажностные напряжения в процессе выхода влаги из древесины сводятся к нулю, а в то же время остаточные напряжения остаются и уменьшаются до конечной величины.






Рис. 6.1. Диаграмма изменения влажности и напряжений в процессе сушки пиломатериалов.








Таким образом во втором периоде сушки остаточные напряжения превышают влажностные и результирующие полные напряжения, имея знак большей составляющей, стремятся к величине остаточных напряжений.




7. Влажность и реклама


В средствах массовой информации часто поставщики пилопродукции, стремясь выразить свою индивидуальность, некорректно рекламируют свою продукцию. Тем самым они неосознанно подрывают престиж российского качества, так как эта информация анализируется на мировых интеллектуальных рынках. Не стремясь дискредитировать своих коллег, мы представляем свой взгляд на такую рекламу.

7.1. Все доски абсолютно сухие. Такие доски можно получить, если сушить согласно методик по определению влажности при температуре 102 град до постоянного веса, удалив всю связанную влагу. В этом случае при механической обработке такие доски впоследствии наберут влагу до эксплуатационной. Это сильно повлияет на шероховатость и чистоту поверхности. Такая технология создает значительные неоправданные затраты на сушку и передержку древесины, так как процесс вытеснения оставшейся влаги очень длительный.

7.2. Качество отличное

Необходимо знать, что существует 5 категорий качества сушки, которые определяются соответствующими влагомерами.








Если на данном предприятии нет таких приборов, то ни о каком отличном качестве не может быть и речи.

7.3. Пиломатериалы прямо из сушки. В них влага распределена неравномерно и имеют место значительные напряжения.

7.4. Гарантированный процент влажности. Такое условие практически невыполнимо. Так как даже при подготовке образцов для градуировки невозможно заранее создать образцы с требуемой влажностью. Влажность взаимосвязана с плотностью. Кроме того, при таких операциях, проводимых в лабораторных условиях, древесину сперва высушивают до 0 % влажности и затем увлажняют, добавляя требуемую влагу.




8. Ошибки при измерении влажности


В практике подобного бизнеса имеют место конфликтные ситуации, связанные с измерением влажности из-за того, что пользователи измеряют разными влагомерами. Рассмотрим и проанализируем характерные ситуации, корректировка которых поможет найти компромисс.

Исследования технологии контроля с Ивлаг показывает, что одни измеряют влажность только с торцов и по поверхности штабеля. Другие делают несколько замеров и полагают, что этого достаточно для определения средней влажности в партии. Последние ближе к истине, но и они не правы. Третьи полагают, что ИВлаг не обладают Погр и являются образцовыми для всех остальных. Естественно, что и они не правы.

Главная ошибка состоит в том, что пользователи недостаточно полно представляют характер распределения влажности в древесине и тем более взаимодействие чувствительных элементов Влаг с древесиной. Это было связано с тем, что традиционно разработчики влагомеров не представляли реальную картину процесса измерения. Но развитие конкуренции и ее ужесточение потребовало расширения знаний в этой части не только разработчиков, но и пользователей.

8.1. Для любого Влаг в Техническом описании (ТО) приводится основная абсолютная погрешность (Погр), измерямая в процентах влажности, например, ? = ±2,0 %. Это означает, что при соблюдении нормальных условий эксплуатации влагомеров ошибка измерения с вероятностью Р=0,95 окажется в пределах

? = ±2,0 %.

Иногда приводится абсолютная среднеквадратическая Погр. Для приведенного примера она будет ±1,0 %. и означает, что с вероятностью 0,68 ошибка не превышает ±1,0 %.

Часто вместо этой Погр в зарубежных Влаг указывается: Resolution: 0,1 % М. С.

Это показатель разрешающей способности Влаг. Он никакого отношения к Погр не имеет. Он показывает аппаратурную Погр при подключении имитатора влажности, который рекомендует фирма-изготовитель данного Влаг. Использование такого имитатора для другого влагомера уже непригодно.

8.2. Диапазон измерения – это область влажностей для которых приведена основная Погр. Если Погр не определена для какого-либо диапазона, это должно быть оговорено словами " не нормируется" либо какими-нибудь другими словами.

При приобретении покупателями игольчатого Влаг (ИВлаг), т. е. такого у которого влажность определяется по электрическому сопротивлению древесины, необходимо знать, что эти Влаг по своему принципу не могут измерять влажность ниже 8 %. Если в паспорте указан, например, диапазон (4–60)%, то стоит усомниться в достоверности характеристики. Для измерения влажности в диапазоне от 0 % и выше пригодны диэлькометрические, инфракрасные, сверхвысокочастотные и некоторые другие Влаг.

Во всем диапазоне от 0 % и выше измеряют влажность все Влаг прямого измерения, основанные на методе высушивания.

Технические данные обычно приводятся для нормальных условий и равномерно распределеной влажности по объему материала. Если эти условия не выполняются, то и Погр может оказаться выше, приведенной в паспорте. Поэтому в паспорте иногда указывают дополнительную Погр или несколько доп. Погр, связанных как правило с изменением какого-либо фактора в условиях эксплуатации.

Например, доп. Погр ? = 0,5 % / 10 градС. Это означает, что при отклонении температуры от нормальной дополнительная погрешность составляет 0,5 % на каждые 10 градС.




9. Миф о точности игольчатой влагометрии


В качестве датчиков (преобразователей влажности) применены иглы. Поэтому кондуктометрические Влаг называют игольчатыми (ИВлаг).

Они широко распространены в мире. Выпускаются они и в России. Наиболее известны влагомеры со светодиодной шкалой. Есть влагомеры с цифровой шкалой и стрелочным индикатором. За рубежом спектр различных игольчатых влагомеров еще шире. на рис. 9.1. представлены наиболее распространенные типы датчиков.






Рис. 9.1. Конструкции игольчатых датчиков

1 – трехигольчатый, 2 – двухигольчатые, 3 – с изолированными электродами.



Длинные и короткие датчики с разными глубинами проникновения и расстояниями между иглами и их количеством захватывают разные объемы древесного вещества и следовательно показывают разные значения влажности.

Теперь рассмотрим как возникает конфликтная ситуация во время контроля влажности.

Например, Поставщик производит замер влажности с помощью трехигольчатого датчика с глубиной проникновения на 10 мм, а Приемщик измеряет с двухигольчатым датчиком с иглами длиной 30 мм доски толщиной 60 мм. При этом длинные иглы, проникая определяют недосущенные участки и в результате этого фактически бракуется вся партия досок. Но на самом деле все выглядит намного сложнее, чем это представляют две конфликтующие стороны.

Рассмотрим процедуру измерения, используя контрольные замеры с помощью датчика с изолированными иглами. Процедура измерения представлена на рис. 9.2. Иностранный Влаг, который был использован для эксперимента считается на рынке влагомеров одним из лучших. Он имеет изолированные иглы, оголенные на концах. Это позволяет измерять перепад по влажности в доске на любой толщине. Иглы достаточно длинные. Контрольные замеры дали следующие показатели по глубине проникновения 9 %, 12,1 %, 13,5 %, 14 %.

Мы видим, что при глубине проникновения на двух уровнях средняя влажность равна примерно Wср1=(9+12,1)/2=10,5 %. В тоже время на глубине она равна примерно Wср2=(13,5+14)/2= 13,7 %. Общее же значение будет равно примерно Wср3=(9+12,1+13,5+14)/4= 12,1 %.

Этим примером мы показываем, что даже правильно измеряя влажность одним и тем же влагомером мы получаем разные значения.

Так и Погр в распределении влажности с поверхности по слоям распределяется по отношению к средней:

dW1=-3,1 %, dW2=0 %, dW3=1,4 %, dW4=1,9 %.

Так какую же влажность брать за основу при таком замере?

Для расширения понятия о влажности, мы вводим такие термины как:

– действительная влажность – это реальная влажность, которая определяется при контроле с использованием метода высушивания.

– интегральная (средняя влажность) – она стремится к действительной влажности и определяется как среднее, состоящее из выборочных замеров с определенным числом. Этот параметр образуется в результате многократных замеров больших объемов пиломатериалов.

– дифференциальная влажность – это влажность, которая имеется в очень малом объеме древесины и определяется с применением метода высушивания.






Рис. 9.2. Процедура измерения влажности Ивлаг с изолированным иглами.



Для точного измерения и юридически обоснованного способа измерения влажности необходимо использовать только прямой метод – метод высушивания. В этом случае усредненное значение будет равно примерно 12 %.




10. Пример построения градуировочной характеристики


В связи с тем, что многие не особенно хорошо представляют построение статических (градуировочных) Град хар-к Влаг, то в данном выпуске мы покажем кратко как это сделать.

Град хар-ки необходимо строить при возникновении сомнений в показаниях данного Влаг, либо для случаев, когда для данной породы хар-ка не приводится.

Необходимо отметить, что построение Град хар-ки требует большой тщательности и аккуратности, грамотного выбора (в соответствии с ГОСТ 16588–79) класса весов, сушильного шкафа, образцов древесины. Количество образцов должно быть не менее 20 штук для каждой точки диапазона. Существует множество «мелочей», не соблюдение которых может свести на «нет» всю работу по градуировке. Поэтому лучше эту работу доверить специалистам.

Образование суммарной Погр от измерения влажности эталонным способом представлено на рис. 10.






Рис. 10. Процедура образования суммарной Погр при измерении влажности эталонным методом.

?m1 – изменение влажности при транспортировке образца,

?m2 – Погр при взвешивании,

?m3 – изменение веса при взвешивании,

?m4 – Погр при изменении температуры сушки от 90 до 160 град С изменяется от +0,4 до – 1,25%W, включается удаление летучих и вытекание смол,

?m5 – поглощение влаги из окружающей среды и эксикатора,

?m6 – Погр взвешивания абсолютно сухого образца



Пример: ?Wобщ при Погр взвешивания 0,01 г для лущеного шпона влажностью 10 % и массой 5 г равна 0,46 %.

Построение Град хар-ки производится путем сравнения показаний прибора и значений влажности, полученных методом высушивания.

Первоначально необходимо отобрать образцы древесины для градуировки. Для этого собирают образцы древесины из трех партий разной влажности. Образцы первой партии должны давать показания в первой трети шкалы. Образцы второй партии – во второй трети шкалы и образцы третьей партии в третьей трети шкалы.

Затем поочередно влажность всех образцов определяется с помощью градуируемого Влаг и метода высушивания. Каждый проверяемый образец должен иметь два показания по градуируемому Влаг – прибору и по действительной влажности.

Данные заносятся в таблицу № 10.1.



Табл. № 1. Таблица данных для определения влажности при градуировке




где: N – номер образца m вл. – масса образца до сушки, г m сух – масса образца после сушки, г W – влажность образца,% П – показания прибора, мка

Затем в каждой группе вычисляется среднее значение влажности








и среднее значение показаний прибора








По полученным усредненным точкам в координатах W% и П строится график. Пример такого графика представлен на рис. 9.4.






Рис. 10. Град хар-ка ИВлаг, построенная по средним точкам.



В отличии от многих диэлектриков древесина имеет ряд особенностей, которые не позволяют представить ее как простое электрическое сопротивление. Древесина неоднородна. В ней существуют годовые слои с разной плотностью. Электрическое сопротивление вдоль и поперек волокон также сильно отличается. В древесине имеются смолы, распределенные неравномерно по объему, различные химические включения в виде солевых и щелочных отложений, которые влияют на величину электрического сопротивления. Кроме этого существуют сотни пород древесины с разными физико-механическими и электрическими свойствами.




11. Реальная градуировочная характеристика ИВлаг


На рис. 11.1. показана графически реальная картина выборочной Град хар-ки ИВлаг при измерении влажности вдоль волокон.






Рис. 11.1. Зависимость электрического сопротивления от влажности при втыкании игл вдоль волокон.



Обращаем внимание на то, что значения по оси сопротивления на рисунках приведены в логарифмическом масштабе.

При анализе рисунков мы видим, что сухая древесина менее 10 % имеет очень большое сопротивление. При втыкании вдоль и поперек волокон имеется значительный разброс в показаниях. Необходимо учесть, что в древесине имеет место дефект, связанный с наклоном волокон и кривизной, косослой, свилеватость и т. п.






Рис. 11.2. Зависимость электрического сопротивления от влажности при втыкании игл поперек волокон.



Объединив хар-ки на рис. 9.5. и 9.6., мы можем сравнить и представить на рис. 9.7.






Рис. 11.3 Сравнительные зависимости электрических сопротивлений от влажности при втыкании игл вдоль (2) и поперек (1) волокон.






12. Имитаторы влажности


Для разных ИВлаг разработаны свои имитаторы влажности. Они служат для проверки работоспособности и стабильности Град хар-ки ИВлаг. На каждую проверяемую точку влажности для определенной древесной породы при соответствующей температуре имеется свое электрическое сопротивление.

Например, для российского ИВлаг по имитатору МТ-01 влажности 14 % соответствует сопротивление 180 Мом и т. п.

Но если этот имитатор воткнуть в ИВлаг другой конструкции, то мы получим другое значение влажности.

На рис. 9.8. представлено семейство Град хар-к зарубежного ИВлаг с учетом влияния температуры на смещение Град хар-ки.






Рис. 12.1. Град хар-ки зарубежного Ивлаг с учетом температуры при контроле



Из рис. 12.1. мы видим, что имитаторы для, важного с технологической точки зрения, нижнего диапазона от 4-до 10 % соответственно составляют от нескольких тысяч до сотен Мом. Нужно отметить, что измерять такие сопротивления с высокой точностью трудно в лабораторных стерильных условиях при использовании высокоточной измерительной апапатуры. К сожалению, производственная среда деревообработки не отвечает этим требованиям.

При измерении влажности двумя ИВлаг разных компаний может получаться Погр из-за того, что использованы не согласующиеся между собой имитаторы влажности. На рис. 12.2. приведены сравнительные хар-ки зависимости оценки влажности для двух разных конструкций ИВлаг с подключением к ним сопротивлений






Рис. 12.2. Сравнительные хар-ки ИВлаг двух фирм.



Мы видим, что хар-ки отличаются друг от друга. Так, например, если ИВлаг 1 дает показания при сопротивлении 100 ком равным 35, 2 % W, то для ИВлаг 2 при том же сопротивлении значение влажности будет соответствовать 50 %. Таким образом разность показаний между двумя ИВлаг dW = 14,8 %. Естественно при уменьшении влажности эти расхождения будут уменьшаться.

Статическая хар-ка зависимости активного сопротивления от влажности, построенная в логарифическом масштабе по оси сопротивлений имеет перегиб в точке соответствующей 30 % влажности.

В диапазонах от 0–30 % и 0–150 % влажности электрические свойства древесины изменяются от проводника до диэлектрика по мере уменьшения влажности.

Формула измерения сопротивления показывает зависимость сопротивления от таких параметров как удельное сопротивление древесины р, площадь поверхности электродов S, расстояние между электродами d.








В дополнительную Погр измерения может входить площадь контакта игл с древесным веществом и степень ее прижима. Чем толще игла, тем сильнее образуется контакт и происходит отжим влаги в месте контакта. Уплотненное древесное пространство между игольчатым электродом и основной массой древесины имеет аналогию включения дополнительного сопротивления.

Это мы показываем на рис. 12.3.






Рис. 12.3. Причины образования Погр при контактировании в месте соприкосновения иглы с древесиной и их электрическая интерпретация.






13. Временной дрейф влаги в процессе контроля


На точность измерения влияют поверхностная и внутренняя влага. Поверхностная влага формируется в результате конденсата, выпадения дождя. Внутренняя влага создается в результате недосушки древесины и зависит от времени вылеживания древесины после сушки и времени измерения.

Точкой отсчета берется начальный момент измерения только что просушенной древесины. Затем эти образцы, которые не теряют свою влагу замеряются через час и затем, через 20 часов. Таким образом мы видим, что хар-ка изменяет свое местоположение, хотя значение действительной влажности не меняется.






Рис. 13. Семейство зависимостей R=f(W%), построенных при временном дрейфе влаги в процессе контроля.



На практике для конкретного ИВлаг рис. 9.11 означает следующее: при измерении влажности в начале мы имеем показание 18,7 %, через час оно изменилось до 20,1 %, через 20 часов мы определили, что оценка влажности стала равна 23,1 %. То есть Погр измерения от такого временного перераспределения влаги внутри образца дает Погр в смещении хар-к на dW= 4,4 %. На самом деле влажность образца в действительности не менялась и была равна 21,2 %.

Эти выкладки позволяют нам сделать следующий вывод: в зависимости места и времени контроля влажности при неравномерно распределенной влажности мы будем получать разные значения влажности. Погр измерения только в этом случае составила d=4,4 %.




14. Влияние температуры древесины


Известно, что электрическое сопротивление древесины изменяется под воздействием температуры. Однако вопрос, касающийся корректировки по температуре не так прост. При втыкании игл в диэлектрик мы должны реально представлять весь процесс взаимодействия. В процессе контактирования тепло в месте соединения будет распределяться между иглой и древесиной. Следовательно по всему объему будет одно значение температуры, а по месту соединения будет возникать иная температура. Это мы показываем на рис. 14.






Рис. 14. Графическая интерпретация места соединения иглы с древесиной и распределения температур в месте контактирования.



Температура в месте контактирования будет значительно ниже, так как игла обладает другой теплопроводностью и энергии для равномерного распределения температуры не будет достаточно для выравнивания. Кроме того у диэлектрика (древесины) отсутствует дополнительная энергия для поддержания температуры в месте контакта, так как сама древесина обладает низкой теплопроводностью и теплоемкостью.

Следовательно, коррректировка по температуре носит чаще рекламный характер. Она не всегда компенсирует изменение сопротивления от температуры. Наиболее приемлемый вариант – это установка датчика температуры в игле. Но этого нет в ИВлаг.




15. Миф о точности безигольчатой влагометрии


Метод измерения влажности, основанный на зависимости диэлектрической проницаемости от влажности называют диэлькометрическим или емкостным. Чаще всего с помощью этого метода создаются Влаг с датчиками, не требующими втыкания игл в древесину и их иногда называют бесконтактными или безигольчатыми (БВлаг).

На практике отделить реактивную составляющую (связанную с т. н. током смещения) от активной (связанной с током проводимости) очень сложно. Поэтому большинство емкостных Влаг фактически измеряет комплексное сопротивление. Для древесины диэлектрическая проницаемость вдоль волокон для ели составляет ?отн=3,06. С увеличением влажности ?отн увеличивается. Увеличиваются и потери (активная составляющая тока).

Современные тенденции развития средств контроля и управления требуют своих правил, к которым можно отнести: – высокая информативность метода измерения,

– возможность получения многопараметровых данных для комбинированной обработки для повышения точностных хар-к,

– высокое быстродействие контроля,

– бесконтактность измерения,

– высокая чувствительность в широком диапазоне,

– исключение влияния мешающих факторов,

– малая трудоемкость измерения,

– высокая проникающая способность,

– возможность измерения при резко меняющихся температурах,

– возможность измерения в труднодоступных местах,

– возможность сбора и обработки большого объема полученной информации при малых трудозатратах для регистрации и управления,

– возможность выбора большого количества электронных схем обработки, линеаризации, последующего ввода информации в компьютерные системы управления и регистрации,

– выявление новых оригинальных бесконтактных методов технологического контроля.

Все это подходит к диэлькометрической влагометрии.

На рис. 15.1 приведена хар-ка БВлаг, работающего в СВЧ диапазоне f=3000 мГц. Как видно из рисунка, при широком диапазоне влажностей имеет место большая относительная Погр, так как сказывается много мешающих факторов. На рис. 10.2. приведена хар-ка БВлаг, работающего в диапазоне ВЧ f=30 мГц. В этом случае диапазон измерения уже, но относительный разброс точек меньше. В обоих случаях, как показали исследования, ни анизотропия древесины, ни ее температура не оказывают влияния на погрешность измерения.

Из рис. 15.1., 15.2 видно, что на хар-ках отсутствуют зоны нечувствительности в диапазоне 0–8 %, характерные для ИВлаг.

Важное достоинство диэлькометрического метода измерения, делающего его весьма перспективным состоит в том, что можно: широко экспериментировать, комбинировать частоты для поиска оптимальных, уменьшать либо компенсировать влияние мешающих факторов.

В реальных хар-ках существует значительный разброс вдоль номинальной усредненной хар-ки. Они и устанавливаются на шкалы приборов. Чем больше будет замеров, тем больше точек будет в пространстве. При увеличении числа замеров мы будем приближаться к истинной хар-ке. Но в реальных процессах мы имеем дело с выборочными методами построения хар-к. Если мы возьмем другую партию образцов и будем строить новую хар-ку, то получим измененную номинальную хар-ку. При построении нескольких хар-к с разными партиями образцов, мы можем получить несколько смещенных друг относительно друга хар-к. Множество отдельных выборочных хар-к будут иметь свою нелинейность и положение в пространстве и колебаться “дышать” в пределах допусковой зоны.



На рис. 15.1.,15.2. Пунктиром выделены области, в пределах, которых может находиться множество экспериментальных точек. По мере приближения к номинальной хар-ке они будут плотнее располагаться друг к другу. Эти хар-ки имеют форму рога, который сужается к малым значениям влажности.






Рис. 15.1. Град. хар-ка БВлаг для диапазона 0–160 %.



Упрощенная модель датчика БВлаг может быть представлена в виде конденсатора. Древесина или любой другой материал – диэлектрик между обкладками конденсатора.






Рис. 15.2. Град. хар-ка БВлаг для дипазона измерения 0–30 %.






Рис. 15.3. Возможные варианты конструкций безигольчатых датчиков влажности. Односторонние: А) 3 скобы. Б) Концентрические кольца, В) Сплошной круг, Г) Двусторонний



Такие датчики выполняются в различных вариация и разделяются на две основные группы: двусторонние и односторонние. Последние чаще всего применяется в промышленности. Конструкции таких датчиков представлены на рис. 15.3 (а, б, в, г)

В настоящее время конкурируют несколько разновидностей односторонних преобразователей. Это конструкции в виде трех пружинистых скоб и плоских дисков или прямоугольников

Для конденсаторного датчика весьма условно (без учета краевого эффекта и др.) емкость равна:






где: S – площадь поверхности датчика

?о – абсолютная диэлектрическая проницаемость

?отн – относительная диэлектрическая проницаемость

d – расстояние между обкладками



В этой формуле параметр диэлектрической проницаемости ?отн зависит влажности. На практике формула для «С» значительно сложнее для случаев с односторонними датчиками, т. к. силовые линии электромагнитного поля имеют разную плотность по зоне измерения.

Для высоких влажностей (свыше 10–12 %) измеряется фактически не емкость, а комплексное сопротивление











Xc – реактивное сопротивление на частоте "w"

Xr – активное сопротивление, связанное с током проводимости



Влажность является функцией комплексного сопротивления

w= f(z).

БВлаг при большом количестве неоспоримых достоинствах имеют собственные недостатки. Это снижает их высокую конкурентоспособность и не позволяет стать единоличными лидерами в борьбе за рынок.

К этим недостаткам можно отнести:

Сложность конструирования универсальных имитаторов влажности. Именно из-за широкого спектра частот, а которых работают такие Влаг.

При работе на сверхвысоких частотах оказывают влияние такие факторы, как: шероховатость поверхности, годовые кольца, направления распиловки пиломатериалов.

Древесину как диэлектрик, с позиций электродинамики и теории антенн, можно в упрощенном виде представить как диэлектрическую линзу. Из теории электродинамими и антенн известно, что диэлектрическая линза меняет диаграмму направленности электромагнитного излучателя (датчика влажности), а также его хар-ки в рабочем диапазоне частот.

Кроме того возникает сложность в создании однородного электромагнитного поля для массового производства таких Влаг. На рис. 15.4 показано графическое представление взаимодействия неоднородного электромагнитного излучения датчика в неоднородной влажностной среде.






Рис. 15.4 Графическое представление распространения неоднородного электромагнитного излучения датчика и его распространения в неоднородной влажностной среде.






16. Конкуренция во влагометрии


Поговорим о конкуренции. Мы полагаем, что она является жизненно важным фактором, способствующим деловой активности в наукоемком бизнесе.

В России (СССР) при ее глобальных объемах производства пилопродукции и деревообработки была чрезвычайно слабо развита система контроля качества продукции, хотя существовала общегосударственная программа. Промышленностью выпускался только игольчатый влагомер. Отсутствовала конкуренция в этом направлении и существовал жесткий порядок постановки на серийное производство различной приборостроительной продукции. Эта недальновидность государства дорого обошлось нашей стране. В то время, когда россияне (бывшие советские люди) довольствовались примитивным игольчатым влагомером, на мировых рынках сцепились в жесткой почти беспощадной борьбе десятки компаний – производителей ИВлаг и БВлаг. Эти компании выковали и закалили себя в этой конкурентной борьбе. Они отточили свое мастерство при очень щедрой общенародной “буржуйской” поддержке национальных деревообработчиков



16.1. Важное свойство в развитии конкуренции состоит в стремлении обнаружить слабые стороны в существующей стратегии конкурентов и партнеров. Это создает неограниченные возможности для поиска собственного перспективного пути развития. Но для этого необходимо обогатить свою память знанием всех богатств, которые выработали конкуренты и обобщить передовой опыт.

Анализ рынка влагометрии показал следующее:

1. Существует очень широкий спектр предлагаемых на рынке приборов для контроля влажности.

2. Имеет место сильная конкуренция даже в отдельных странах среди однотипных по методам влагомеров. Например, в США несколько компаний выпускают и специализирутся на ИВлаг. В Европе во многих странах выпускаются игольчатые влагомеры древесины.

3. Обработка сознания клиентов проводится с использованием специальных научно-познавательных журналов, показывающих компетентность производителей Влаг.

4. Высококачественный дизайн конструкций

5. Широкое использование микропроцессорной техники для обработки информации и стыковки с периферийными устройствами, системами управления и контроля.

6. Применение влагомеров для контроля сырья и продукции рассматривается компаниями как вещественное доказательство реальной работы над качеством.

7. Разработчикам национальной влагометрии оказывается всенародная государственная “капиталистическая” поддержка как общества, так и производителей технологического оборудования. Множество приборов выпускается как дополнение к технологическому оборудованию и часто входит в общий комплект поставки.

Слабая информированность о зарубежной конкуренции и непробужденное желание к повышению имиджа российского качества привели к тому, что в российской производственной среде возникло устойчивое мнение только об одном самом авторитетном электрическом методе измерения влажности с использованием игольчатой технологии. Такого мнения придерживаются не только россияне. В мировой практике ИВлаг получили признание как наиболее точные и достоверные. Этот момент является существенным в торможении процессов высокоэффективного развития национальной программы качества и развития отечественной приборостроительной техники и средств автоматизации и контроля.

Рассматривая конкуренцию и множество проблем в этой области можно констатировать, что все методы измерения влажности имеют равное право на существование.

16.2. Поэтому цели и задачи формулируются в следующем:

1. Поиск и исследование наиболее высокоточных и прогрессивных методов и средств измерения влажности.

2. Разработка наиболее оптимальных конструкций с целью последующего испытания в производственных условиях.

3. Обеспечение национальных производств отечественными конструкциями влагометрии прогрессивной технологии.

Первоочередная задача – это разработка и внедрение наиболее приемлемого на сегодняшний день HFW-meter, удовлетворяющего производство, который бы хоть как-то заполнил вакуум российского приборостроительного парка в этой направлении.

Анализируя возникшее изобилие различных приборов, представленных мировой цивилизацией на российском рынке, можно сделать несколько предварительных выводов:

1. Проблема влагометрии не решена и на Западе. Нет электрического влагомера по точности сопоставимого с основанным на методе высушивания. Российские и зарубежные разработчики влагомеров с точки зрения научной методологии поиска находятся в одинаковых стартовых позициях. Единственное, что успокаивает, что нет предела совершенству.

2. Все разработки на Западе идут в одном направлении. Это использование измерителей комплексного сопротивления с применением современных микропроцессорных систем.

3. Анализ разработок показывает, что разработчики практически не уделяют внимания анализу процессов, происходящих при взаимодействии непосредственно датчика и древесного вещества.

4. Многие компании стараясь придать своим изделиям более высокую конкурентоспособность подменяют одну из самых важных хар-к – абсолютную Погр, которая довольно высока таким понятием как разрешающая способность. Это значение, при использовании цифровой шкалы, на порядок меньше абсолютной Погр и, соответственно, более эффективно выглядит с листов рекламных проспектов. Но таким образом некоторые производители поступают некорректно и умышленно вводят в заблуждение клиентов. Такой прием можно отнести к недобросовестному способу ведения конкурентной борьбы. Кроме того они подрывают авторитет наукоемкого направления в бизнесе и создают трудности в разработке более совершенных методов и средств измерения влажности. Можно только выразить сожаление по этому поводу. Большинство производителей влагомеров мало уделяют внимания повышению знаний о влагомерах и о влажности своим клиентам. По – видимому, недостаточно информированного клиента легче уговорить и продать ему товар (влагомер) не очень высокого качества. При этом часто используется прием “красивой обертки”.

Т.е. внешний безукоризненный товарный вид и довольно посредственные метрологические хар-ки.



5. Производители Влаг не повышают научный интеллект своих клиентов и таким образом представляют процесс измерения влажности в упрощенном виде. Внушая клиентам следующее: “Наши влагомеры – это и есть стандарт. Приобретая наши влагомеры, вы решаете все проблемы”.

6. Нет развития конкуренции в методах и средствах повышения квалифицированности клиентов до такого же уровня как и у самих производителей.



Разработчики должны строить долговременную стратегию партнерства, честно говоря с клиентами о недостатках своих приборов на сегодняшний день, завоевывая тем самым их доверие. Разработчики должны помочь клиентам разобраться в достоинствах и недостатках влагомеров других технологий. В результате такого партнерства такие клиенты более защищены от давления рекламы и свободны в оценке и выборе.

Разработчик-бизнесмен не должен бояться знающего настырного покупателя. Для этого необходимо многократно проводить сравнительные испытания отечественных и зарубежных Влаг и сравнения их метрологических хар-к. Некоторые из них мы можем улучшить и предпринимаем усилия для этого.



16.3. В этой части мы хотим показать на основе рекламной информации как жестко ведется конкурентная борьба двух известных фирм-производителей ИВлаг и Бвлаг за рынки сбыта. Производитель ИВлаг, например, пишет: " Игольчатые датчики – это промышленный стандарт точности".

Хотя стандартом для всех методов и средств может служить только эталонный метод высушивания. Далее: "Игольчатые датчики – это единственный верный путь для быстрого и точного получения информации". (Представим как мы втыкаем иглы длиной около 30 мм в российский дуб, красное дерево и т. п. И сколько раз мы это можем сделать за смену, за месяц, за год и в каждой заготовке? Кто же будет втыкать иглы полностью в дерево такой плотности?) Есть системы автоматического контроля влажности досок на потоках. На пневмоцилиндре устанавливается игольчатый влагомер. Доска проходит около датчика влажности на конвейере. На какой то миг линия останавливается. Пневмоцилиндр приводится в действие и иглы втыкаются в доску. Производится замер. Затем иглы также вытаскиваются и доска идет в соответствии с проведенным замером в нужный карман.

"Этот метод был принят промышленностью в 40-х годах". (На пороге следующего столетия поневоле западает мысль, неужели в такой высокоразвитой стране не смогли придумать ничего нового?)

В качестве веского аргумента компания пишет: "Мы работаем во влагомерном бизнесе почти 50 лет и мы знаем этот бизнес лучше, чем кто-нибудь другой"? Также еще могут ссылаться на родственные связи. «Еще мой отец в 1946 году разработал первый электронный влагомер».

Надо отметить, что приемственности и долголетней работе компании на жестком конкурентном рынке уделяется особое внимание. Поэтому часто пишут в рекламных проспектах или на самой продукции. «Основано в таком – то году». То-есть это подтверждает, что компания стоит твердо вот уже второе столетие. Поэтому данная книга показывает, что в России (СССР) ведутся работы и имеются специалисты в этом направлении. Далее они пишут:

"Есть другие пути измерения влажности, но нет других технологий, способных дать быстро много информации подобно игольчатому прибору. Есть так называемая «новая» технология электромагнитных волн, в действительности, основанная на старом принципе радиочастот. Эти приборы имеют непроницаемое покрытие электродов, они дают недостоверные показания для влажности вблизи источника магнитного поля. Сигнал слабеет с увеличением глубины проникновения. Невозможно получить правильное среднее значение влажности поперечного разреза, потому, что эта технология не может показать разницу между влажностью на поверхности и внутри. Другими словами поверхностные приборы неэффективны при оценке полного распределения влажности в доске. Поверхностные влагомеры не могут показать когда влажность одинакова и когда есть градиент и не определяют направление градиента. На них также влияет присутствие деревянных предметов в районе измерений. Применяя игольчатые датчики вы вынуждены тратить время на втыкание игл, но для обеспечения качества другого выхода нет".!!!!

И что же на эти выпады отвечают такие же престижные компании производители бесконтактных методов и средств измерения.

Дается фотография мужчины с перекошенным лицом и надпись под ней: "Иголки – это издевательство над древесиной. Они оставляют некрасивые дырки" и т. п.

Компании на рынке взаимодействуют между собой одновременно как партнеры и конкуренты. Для нас зарубежные компании производители Бвлаг и ИВлаг являются одновременно и партнерами и конкурентами. Предлагаемые ими разработки позволяют реально оценить наше положение и показать ситуацию отечественным клиентам. Они в свою очередь должны реально оценить эту ситуацию и принять соответствующее решение.

Для создания конкурентной защиты, необходимо разработчикам БВлаг проводить свою конкурентную стратегию по отношению в разработчикам ИВлаг, полагая производителей БВлаг, как своих партнеров и конкурентов одновременно.

Но хотя конкуренты могут быть с ними на общем пути, в какой-то момент времени нужно их рассматривать как партнеров.

Сложилось мнение, что внедрение зарубежных компаний опасно для российской промышленности. Но на самом деле появление конкурента создает условия для мобилизации внутренних резервов, желания защищаться и это способствует национальной активизации. В реальности, внедрение зарубежных производителей БВлаг на российском рынке способствовало и довольно эффективно распространению подобной отечественной продукции. Инерционность мышления соотечествеников по отношению к российскими разработкам показала их неуверенность в восприятии новшеств и новых технологий. Только когда на российском рынке стали активизироваться зарубежные компании производители БВлаг со своей дорогостоящей высококачественной продукцией, то тут то авторитет этого метода резко возрос. Поэтому продукция стала находить сбыт и клиентов.



16.4. Конкуренция в игольчато-безигольчатой технологии контроля

Причины появления Погр. Одна из причин: неравномерное распределение влаги по сечению материала. Обычно это явление возникает после термообработки (сушки) древесины.

Рис. 16.1. Иллюстрируют причины появления Погр, связанных с неравномерным распределением влаги по объему материала.

ИВлаг не могут измерять влажность ниже 7–8 %. Поэтому для прогнозирования средней влажности они непригодны. И это мы покажем ниже на примерах.

Для облегчения расчета средней W введем понятие "сухость".

Определим ее разность между 8 % и действительным значением (Wd)

СУХ = 8 % – Wd

Например: 1. Wd= 5 %, тогда СУХ=8–5=+3 %.

Wd= 12 %, тогда СУХ= 8–12= -4%.

Для таких операций более пригодными являются БВлаг, которые могут измерять влажность до нулевых значений.






Рис. 16.1. Графическая интерпретация измерения влажности с использованием игольчатого и бесконтактного датчика при контроле древесины, имеющих внутренний разброс влажности.



Нижний граничный предел для ИВлаг, равный 8 % по шкале показывает, что такой запас по сухости трудно определить. Поэтому, даже если и были отобраны, кажущиеся сухими, доски, то имеющееся внутри недосушенное пространство при перераспределении даст показания более высоких значений. При определении влажности БВлаг можно отбирать доски с запасом, используя значения по левой границе отклонения. Таким образом можно обезопасить себя от получения досок с недосушкой и если это будет иметь место, то запас по сухости выправит это состояние.

Рассмотрим на примере. Влажность в доске толщиной 60 мм была распределена на три зоны 6–12–6 %. При срезании верхнего слоя было обнаружено, что влажность в середине была равна 12 %. На самом деле в этой части она равна (12+6)/2= 9 %. На самом деле влажность в образце равна (6+12+6)/3= 8 %.






Рис. 16.2. Графическая интерпретация появления погрешностей при неравномерно распределенной влаге по объему для ИВлаг и БВлаг.



Пересушка верхних слоев гарантирует от недосушки всего образца, но это можно определить только с помощью Бвлаг. Для сушильщиков это преимущество позволяет точнее определять время оптимального окончания процесса сушки, так как в случае контроля уже сухой и даже пересушенной древесины ИВлаг будет показывать все равно 8 %.

Пересушка древесины сильно влияет на такие качественные показатели как шероховатость поверхности и чистота обработки. При механической обработке пересушенной древесины после ее естественного вылеживания будут увеличиваться размеры. Это приведет к изменению класса шероховатости и чистоты поверхности. Поэтому измерение нижней границы диапазона влажности является важным показателем для последующей механической обработки.

Редкий всплеск может быть вызван наличием неоднородностей: ложного ядра, смоляного кармашка и другими дефектами.

Для наглядности рассмотрим пример: Например, доска имеет толщину 60 мм. В ней мы имеет три основные зоны по сечению – 20 мм-20 мм-20 мм. Влажность в них распределена неравномерно и соответственно в каждом слое расположится в следующем порядке: 8–14–8 %. Если срезать верхнюю часть то обнаружим, что доска сырая и влажность равна 14 %. На самом деле средняя влажность образца равна W=(8+14+8)/3= 10 %. При срезанном верхнем слое, имеющем 8 %, соответственно средняя влажность будет равна (14+8)/2=11 %. Если определять влажность доски без учета снятого верхнего срезанного слоя по поверхности среза, то влажность равна 14 %.

Таким образом встает правомерный вопрос, так какая же влажность является верной и точно определющей для момента поставки? По этому поводу имеется только один ответ, который заключается в следующем: влажность определяется из образца, который вырезается из доски и подвергается эталонному методу определения влажности – методу высушивания. При этом в этом образце присутствуют верхние, средние и нижние слои. Каждый из них вносит свою долю в общее усредненное значение по всему объему измеряемого образца. Таким образом мы можем констатировать, что для подстраховки и получения соответствующего запаса по сухости нужно отбирать доски, которые бы имели в поверхностном слое как можно меньшее значение влажности. Это необходимо, для того, чтобы при перераспределении влаги и выравнивании по всему объему ее хватило бы для получения требуемой влажности.



16.5. Сравнительная таблица имитаторов ИВлаг И БВлаг

Для проверки рабочих точек соответствующих значениям влажности обычно используют серийно выпускаемые резисторы или конденсаторы. Поэтому ИВлаг и получили широкое распространение из-за того. что в качестве базового прибора использовался измеритель сопротивлений.

Поэтому к ИВлаг придается специальный имитатор влажности или таблица с указанием связи между сопротивлением и влажностью. Иногда такие изделия называли эталонами влажности. Но здесь необходимо оговорить, что эталонами их называть некорректно. Эталоном обычно считается образцовое средство для определения основной погрешности, связанной с влажностью. Прибор, то все таки является не измерителем сопротивления, а Влаг. В природе нет эталона влажности, так как влага взаимосвязана с плотностью, неравномерно распределена в пространстве образца и изменяется во времени. В этом то и есть отличие по сравнению с другими измерениями, например, с массой или размером. В них в качестве эталона мы можем использовать прецизионную гирю, или линейку, носить их с собой в кармане и проверять точность обвеса или обмера. Поэтому, предлагаемый компаниями, имитатор влажности позволяет определить разрешающую способность прибора, воспроизводимость контрольных точек, изменение формы Град хар-ки и т. п., но не более того.

Мы представляем сравнительные таблицы 11.1. таких имитаторов влажности применительно для Ивлаг и Бвлаг.

Табл. 16.1. Таблица имитаторов влажности для ИВлаг и БВлаг






Где: К – Ком, М – Мом, Г – Гом



Анализируя данные в табл. 16.1., мы видим, что для важнейшей части технологического диапазона, отвечающим требованиям по 1,2 и 3 (высшим) категориям качества сушки, у ИВлаг вообще отсутствуют имитаторы влажности.

Из табл.16.1.видно, что имитаторы должны представлять собой сопротивления (в технологическом диапазоне влажностей) порядка 10^8 –10^9 ом. Имитаторы для ИВлаг очень чувствительны к загрязнениям, к поверхностной влаге (конденсату) и могут по вышеперечисленным причинам сильно изменять свои значения. Иначе: “Имитаторы для ИВлаг капризны и ненадежны”.

Имитаторы для БВлаг представляют собой сопротивления порядка 10^4 ом. Такие значения очень легко воспроизвести с помощью обычных (промышленно выпускаемых) резисторов типа МЛТ, УЛИ и т. п. Они не меняют своих значений от условий окружающей среды, надежны и стабильны во времени. Такая существенная разница величин резисторов имитаторов для ИВлаг и Бвлаг объясняется принципиальным различием в методе измерения. По этой же причине Бвлаг чувствителен к влажности от 0 до 8 %.





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/book/anatoliy-sergeevich-sa/iskusstvo-vlagometrii-tverdyh-i-sypuchih-materialov-45703255/chitat-onlayn/) на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



В этой книге представлены результаты научно-практических исследований по измерению влажности твердых и сыпучих материалов. Немного о науке, практике и бизнесе во влагометрии. Показаны практические примеры развития бизнеса в этом направлении применительно к особенностям измерения. Россия — великая лесная держава, в которой должны быть разработаны и использованы такие же сопоставимые по масштабу средства измерения и контроля влажности твердых и сыпучих материалов. Эта книга предназначена для специалистов, стремящихся развивать национальный наукоёмкий бизнес.

Как скачать книгу - "Искусство влагометрии твердых и сыпучих материалов" в fb2, ePub, txt и других форматах?

  1. Нажмите на кнопку "полная версия" справа от обложки книги на версии сайта для ПК или под обложкой на мобюильной версии сайта
    Полная версия книги
  2. Купите книгу на литресе по кнопке со скриншота
    Пример кнопки для покупки книги
    Если книга "Искусство влагометрии твердых и сыпучих материалов" доступна в бесплатно то будет вот такая кнопка
    Пример кнопки, если книга бесплатная
  3. Выполните вход в личный кабинет на сайте ЛитРес с вашим логином и паролем.
  4. В правом верхнем углу сайта нажмите «Мои книги» и перейдите в подраздел «Мои».
  5. Нажмите на обложку книги -"Искусство влагометрии твердых и сыпучих материалов", чтобы скачать книгу для телефона или на ПК.
    Аудиокнига - «Искусство влагометрии твердых и сыпучих материалов»
  6. В разделе «Скачать в виде файла» нажмите на нужный вам формат файла:

    Для чтения на телефоне подойдут следующие форматы (при клике на формат вы можете сразу скачать бесплатно фрагмент книги "Искусство влагометрии твердых и сыпучих материалов" для ознакомления):

    • FB2 - Для телефонов, планшетов на Android, электронных книг (кроме Kindle) и других программ
    • EPUB - подходит для устройств на ios (iPhone, iPad, Mac) и большинства приложений для чтения

    Для чтения на компьютере подходят форматы:

    • TXT - можно открыть на любом компьютере в текстовом редакторе
    • RTF - также можно открыть на любом ПК
    • A4 PDF - открывается в программе Adobe Reader

    Другие форматы:

    • MOBI - подходит для электронных книг Kindle и Android-приложений
    • IOS.EPUB - идеально подойдет для iPhone и iPad
    • A6 PDF - оптимизирован и подойдет для смартфонов
    • FB3 - более развитый формат FB2

  7. Сохраните файл на свой компьютер или телефоне.

Книги автора

Рекомендуем

Последние отзывы
Оставьте отзыв к любой книге и его увидят десятки тысяч людей!
  • константин александрович обрезанов:
    3★
    21.08.2023
  • константин александрович обрезанов:
    3.1★
    11.08.2023
  • Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *